PROCEEDINGS

oF SCIENCE

Data Access in HEP

Fabrizio Furano*'
CERN

E-mail: f urano@ern. ch

In this paper we pragmatically address some general asgismis massive data access in the HEP
environment, starting to focus on the relationships tleathong the characteristics of the avail-
able technologies and the data access strategies whicbm@sequently possible. The upcoming
evolutions in the computing performance available alsbaipersonal level will likely pose new
challenges for the systems that have to feed the compusatiith data. We will introduce some
ideas that may constitute the next steps in the evolutioniekind of systems, towards new levels
of performance, interoperability and robustness. Effityerunning data-intensive applications
can be very challenging in a single site, depending on the s€¢the computations; running them

in a worldwide distributed environment with chaotic uselated random access patterns needs a
design which avoids all the pitfalls which could harm its@#hcy at a major degree.

13th International Workshop on Advanced Computing and ysiglTechniques in Physics Research
February 22-27, 2010
Jaipur, India

*Speaker.
TThanks to A.Hanushevsky and F.Carminati for their invaleaipport.

(© Copyright owned by the author(s) under the terms of the @e&ommons Attribution-NonCommercial-ShareAlike Licen http://pos.sissa.it/

Data Access in HEP Fabrizio Furano

1. INTRODUCTION

In this work we address the various solutions we developeddar to initiate a smooth transi-
tion from a high performance storage model composed by akevedes in different distant sites to
a model where the nodes cooperate to give a unique file sydtermeherent view of their content.

With the term “node” we refer to the deployment of a storage i any size, from a small set
of disks up to the most complex hierarchical storage [19pitetion.

The task of promoting the maximum level of performance whilaking a potentially high
number of storage nodes collaborate, is very challengirghdeve. The goal is to be able to effec-
tively deploy a production-quality system, where the fiowlities are effectively usable, and the
data access performance is as close as possible to the chalikaby the hardware used to deploy
this system. This can be considered as the major challergyecinsystems, because requirements
and expectations about performance and robustness arbigary

Moreover, the high latency typical of the wide area netwdliAN) connections, and the in-
trinsically higher probability of temporary disconnectioamong clients and servers residing in
different sites have historically been considered as varyg broblems.

The idea behind our interest for WAN direct data access is\aoéssarily to force computa-
tions to be performed towards remote data. Hence, we do tievé¢hat local storage clusters can
be replaced at the present time, especially in the casesvaharge computing farm is accessing
the data. We believe that the “classical” use case wheraradan only access a storage element
very “close” to it, is not the only choice anymore, as it is derstrated, for example, in a produc-
tion environment by the implementation of the ALICE compgtmodel [13] [14] [15].

In a modern computing model dealing with data access for Higgrgy Physics experiments
(but probably not only High Energy Physics), there are otleey interesting use cases that can be
easily accommodated with a well working WAN-wide data ascésr example:

e Interactive data access, especially in the case of anaypgikcations that exploit the com-
puting power of modern multicore architectures [11]. Thmnd be even more precious for
tasks like debugging an analysis or data-mining applioaithout having to copy locally
the data it accesses.

¢ Allow a batch analysis job to continue its execution if itdieal in a farm whose local storage
element lost the data files which were supposed to be preEkay. may instead be present
in another site.

e Any other usage which could come to the mind of an user of thddMyide Web, which
made interactivity available in a very easy way via WAN.

Hence, the objectives this kinds of systems are aiming far ar

To be able to deploy a "unified worldwide storage”, which $garently integrates function-
alities at both site level and global level.

Data Access in HEP Fabrizio Furano

e To improve data access speed, transaction rate, scalailit efficiency.

e To allow dealing with Wide Area Networks, both for distrimg the overall system and
accessing its data.

e To implement fault tolerant communication policies.

¢ To implement fault tolerance through the “self healing” @hifities of the content of a Stor-
age Element (SE).

e To give to remote SEs ways to remain synchronized with thedaa that describes their
content.

These objectives also led us to address the issues relatkdhei scalability of the whole
design, and the fact that the focus on performance is a mejmiirement, since these aspects can
make, in practice, the difference between being able to aia dnalysis applications and being
not. The case study for these methods is the ALICE [13] [15]nHEnergy Physics experiment at
CERN, where a system based on these principles has beemarttiedly deployed on an already-
running production environment among many (about 60) sipesad all over the world, accessed
concurrently by tens of thousands of data analysis jobs. ddew given the generality of the
discussed topics, the methods discussed in this paper extdreled to any other field with similar
requirements.

1.1 Theproblem

High Energy Physics experiments, from the computing pdiniew, rely typically on statis-
tics about events and on all the relative procedures toifgieantd classify them. Very often, in order
to get sufficient statistics, huge amounts of data are aedJys data stores which can reach sizes
up to a few dozens of Petabytes, but which will likely grow fmucore in the future generations of
experiments. Hence, the typical computing scenario deigitstans or hundreds million files in the
repositories and tens of thousands of concurrent datasinglprocesses, often callggbs Each
job can open many files at once (e.g. about 100-150 in ALICEoU®O00 in GLAST/Fermi), and
keep them open for the time needed.

With these numbers, it is easy to understand why the file a@saction rate for the storage sys-
tem can be very high. With respect to that, a rate of (i opens per second in a local cluster is
not uncommon. In our experience the source of this traffidosaa combination of the local GRID
site, a local batch system, a local PROOF [11] cluster, reid@AN-wide clients and occasional
interactive users.

Historically, a common strategy, largely adopted in HERydadle very large amounts of data
(on the order of the dozens of Petabytes per year) is toldistrithe data among different comput-
ing centres, assigning a part of the data to each of themilghp$mving some sites that are more
important than others.

Among others, one of the consequences of this kind of anthites is that, for example, if
a data processing job needs to access two data files, eachsti@g at a different site, an often

Data Access in HEP Fabrizio Furano

adopted solution is to make sure that a single site contaotis &f them, and the processing is
started there.

Immediate consequences coming from the above scenarifoaigstance, that a hypothetical data
analysis job must wait for all of its data to be present at @, ¥iefore starting, or that the time
to wait before starting can grow if some file transfers faill dnave to be rescheduled. Moreover,
the task of assigning files to sites (and replicating them)ezsily degrade into a complex n-to-m
matching problem, to be solved online, as new data comesamuld data is replicated in different
places. An optimal solution is very difficult to achieve, givthe typically very high complexity of
such systems in the real deployments.

One could object that the complexity of an n-to-m online rhaig problem can be avoided in
some cases by assigning to each site something like a "¢leabdet of the data, i.e. a set of files
whose processing does not need the presence of files residimghere. This situation can the-
oretically evolve to one where the sites containing theated "trendy datasets" are overloaded,
while others can be idle, or, alternatively, to a situatidreve the majority of the sites are manually
forced to host the same data sets. Both situations, in onrarpiare undesirable.

1.2 File catalogues and metadata catalogues

Even if the discussed aspects are well known, however, iit @ir opinion that the initiatives
related to what we can call "transparent storage glob#@izaare not apparently progressing fast
enough to allow a system designer to conceive a very largetdited production storage deploy-
ment using them in a transparent way. What happens in mameg éashat those designs include
some external component whose purpose is to take decidiung file placements, based on the
knowledge of the supposed current global status of the ggosgstem, i.e. the current (and/or
desired) association of data to sites. Invariably, thislkihcomponent takes the form of a simple-
minded "file catalogue”. Its deployment may represent aopexdnce bottleneck in the architecture
and also it can be a single point of failure, or a source ofnsiencies, as discussed later.

Here we must point out the subtle difference that lies, in\doew, between a file catalogue
and an application-related metadata catalogue. A file aguel is a list of files, associated to
other information, e.g. the sites/servers that host eadicpkar file or the URLS to access them.
When part of a common design, it often is the only way an apptia has to locate a file in a
heavily distributed environment, hence it must be conthébe each file any application needs to
access. A metadata catalogue, instead, contains infamaiout the content of files, but not about
where they can be accessed. Hence it can contain metadatiazabon-existing file, or a file can
have in principle no metadata entries. In our view, a worttbzstorage system should shield the
applications from its internals, like for example the task#ocating files through sites or through
servers.

Assigning the task of locating files to a comprehensive g®isystem, in our view, can be
highly desirable for the intrinsic robustness of the comcéfile catalogue instead must deal with
the fact that the content of the repository might change imeontrollable way (e.g. a broken
media or other issues), opening new failure opportunitigsch can also be due to mis-alignments

Data Access in HEP Fabrizio Furano

between its content and the actual content of the repository

To give a simpler example, we consider a completely diffedemain: the ID3 tags for music
files. A technically very good example of a comprehensiveadfattia catalogue for them is e.g. the
www.musicbrainz.orgvebsite. We could also think about creating a file catalogugexing all
the music files owned by the world’s population (and the swadeld not be so different from the
scale of the file catalogues of modern HEP experiments). Whtesdifference among these two
is that in the real world everybody is allowed not to own (otdose or damage) a CD listed in
this metadata catalogue. This would not be considered aildguhe maintainers of the metadata,
and has no consequence on the information about that gdartiCl. In other words, this is just
information about music releases which somebody could avehsamebody not, and somebody
else is unable to tell. Hence, an application willing to @ a set of music files would only need
to know which music files to process, and not how they can besaed and in which data server
in a worldwide deployment.

On the other hand, a "file catalogue"-like system aims atgbaitperfect” representation of reality,
and this adds some layers of complexity to the task, lastdileast that it is computationally very
difficult (if not impossible) just to verify that all the efis are correct and that all the CDs owned
(and sold/exchanged) by the persons are listed and coriattibuted. Our point, when dealing
with this kind of problems is that, from a general perspegtigur proposal is not to promote
a metadata catalogue to become a file catalogue, since findingtifying the location of the
requested resources is a task belonging to the storagersigster, not to the layer which handles
the information bookkeeping. This might be considered aomior even subtle aspect, but it makes
a very big difference from the architectural point of viewemthe scale of the system is very large
and it is distributed worldwide. We tried to implement angldg a system based on these concepts
by using and contributing to the Xrootd/Scalla softwardestor data access.

2. XROOTD AND THE SCALLA SOFTWARE SUITE

The basic system component of the Scalla software suite ighapgerformance data server
akin to a file server calledrootd However, unlike NFS, the xrootd protocol includes a nundjer
features like:

e Capability to accommodate up to several tens of thousanalsuceent physical client con-
nections per server;

e Capability to support several tens of thousands outstgrdiguests sharing the same physi-
cal connection;

e Communication optimizations, which allow clients to aerate data transfers (e.g., overlap-
ping requests, TCP multistreaming, vectored read reqeé&sis

e An extensive fault recovery protocol that allows data tfarssto be interrupted and continued
at an alternate server;

e A comprehensive authentication/authorization frameyork

Data Access in HEP Fabrizio Furano

e The possibility of interfacing a data server with externatems, like tape drives, in order to
provide transparent hierarchical storage capabiliti€$. [1

e Peer-to-peer elements that allow xrootd servers to beeskstogether while still providing
a uniform name space.

Xrootd's clustering is accomplished by tleensdcomponent of the system. This is a spe-
cialized server that can co-ordinate xrootd’s activitied direct clients to appropriate servers in
real-time. In essence, the system consists of:

e A logical data network (i.e., the xrootd servers);

e A logical control network (i.e., the cmsd servers), basea @noprietery message passing
technology.

The control network is used to cluster servers while the dataork is used to deliver actual data.
We define anodeas a server pairing of an xrootd with a cmsd.

A cmsd can assume multiple roles, depending on the natuteedbsk. In its manager role,
the cmsd discovers the best server for a client file requabstarordinates the organization of a
cluster. In its server role, the cmsd provides sufficienbrimfation to its manager cmsd so that it
can properly select a data server for a client request.

Hence, a server cmsd is essentially an agent running on aeater node. In its supervisor
role, the cmsd assumes the duties of both manager and sesv@manager, it allows server cmsd’s
to cluster around it, it aggregates the information prodidg the server cmsd’s and forwards the
information to its manager cmsd. When a request is made hyatsager, the supervisor cmsd
determines which server cmsd will be used to satisfy theasiguThis role parceling allows the
formation of data server cells that cluster around a logaéstisor, which, in turn, clusters around
a manager cmsd.

We can now expand the definition of a node to encompass theAalata server node consists
of an xrootd coupled with a server cmsd, a supervisor nodsistsnof an xrootd and a supervisor
cmsd, and a manager node consists of an xrootd coupled witmager cmsd. The term node is
logical, since supervisors can execute on the same hardsaceby data servers.

2.1 Céll-based organisation

To limit the amount of message traffic in the system, a celkisis of 1-t0-64 server nodes.
Cells then cluster, in groups of up to 64. Clusters can, in,tform superclusters, as needed. As
shown in Figure 1, the system is organized as a B-64 tree,anitlanager cmsd sitting at the root
of the tree. Since supervisors also function as managersetin manager should subsequently be
assumed to include supervisors.

A hierarchical organization provides a predictable mesdaaffic pattern and is extremely
well suited for conducting directed searches for file resesirequested by a client. Additionally,
its performance, which depends on the number of collabayatodes, scales very quickly with

Data Access in HEP Fabrizio Furano

Client

The client contacts a sequence
of supervisor nodes.

Every supervisor steers the client
to one of the nodes at the lower
boundary of the cell it manages.

@ Supervisor node

O Data server node

Figure 1: Cell-like organization of an xrootd cluster

only a small increase in messaging overhead. For instarteg-kevel tree is able to cluster up to
262,144 data servers, with no data server being more thahdp® away from the root node.

In order to provide enhanced fault-tolerance at the sernder, snanager nodes can be repli-
cated. When nodes in the B-64 tree are replicated, the aaEom becomes a directed acyclic
graph and maintains predictable message traffic. Thus, wieesystem is configured with
managers, there are at leastontrol paths from a manager to a data server node, allowing f
significant number of node failures before any part of théesydecomes unreachable. Replicated
manager nodes can be used as fail-over nodes or be asked toallaace the control traffic. Data
server nodes are never replicated. Instead, file resouragsbmreplicated across multiple data
servers to provide the desired level of fault-tolerance el & overall data access performance.

The main reason why we do not use the term “file system” wheernafy to this kind of
system is the fact that some requirements of file systems le@e relaxed, in order to make it
easier to head for extreme robustness, performance arabaitgal The general idea was that, for
example, it is much easier to give up atomicity in distrilobuteansactions than being unable to
make the system grow if its performance/size is not sufficiear example, right now there was no
need to dedicate a serious effort in order to allow for atodistributed transactions or distributed
file locks. These functionalities, when related to extreragggmance and scalability are still an
open research problem, even more critical when dealing ligh latency networks interconnect-
ing nodes, clients and servers over a WAN. In HEP, in the vagbrty of the cases, the data files
are never updated, they are created and then accessed modadand eventually deleted later),
so these relaxations did not create problems to the contpotdels where this system was used
up to now.

These kinds of simplifications were also related to the palei peer-to-peer like behaviour of
the xrootd mechanism behind the file location functiongditiln the xrootd case, moreover, we can
claim for instance that the fact that there is no databasetigmtirely true. In factthe database
used to locate files is constituted by the message-pasasedbaggregation of several hierarchical
databases, which are the file systems of all the aggregatd dirtitions. Of course, these are
extremely well optimised for their purpose and are up to dgtdefinition; hence there is no need

Data Access in HEP Fabrizio Furano

to replicate their content into a typically slow externalatmse, just to locate files in sites or single
servers.

Another characteristic of the xrootd daemon, which is ewmtgly important, is the fact that
each server hides its internal paths where the data is dbgrateans of a simple local string sub-
stitution in the file names. In our terminology this is calléatalroot”. Doing this, each server in
a cluster can export a namespace that is detached from thesr@nthe mount points of a given
server. Using this kind of feature, in a typical setup, adl servers are configured in order to export
the same namespace, and hence the same file exported by amomthserver will appear to have
the same file name without the need of potentially complegrasi name translations.

This kind of internal filename prefix processing is also useddggregate multiple mount points in

the same server. Doing this, the processing applicatians@anpletely detached from the internal
deployment details; all they see is a common coherent naaeespnd the computational overhead
of this kind of local name translation is extremely low.

2.2 Fault tolerance

Other aspects, which we consider as very important, are tredated to robustness and fault
tolerance. From one side, a system designer has to be frezidedwhat the system should do
if, for instance, a disk breaks, and its content is lost. Githe relative frequency of this kind of
hardware problems, the manual recovery approach shouledoeed to a minimum or not needed
at all. The typical solutions exploited in fail-safe HEPalatanagement designs are:

e The disk pool is just a disk-based cache of an external tagiersy hence, if a disk breaks,
its content will be (typically automatically) re-stagedrin the external units by some other
server in the same cluster. Of course, the system must becalvlerk correctly even during
this process.

e The files are replicated somewhere else. Hence, some systdchschedule the creation of
a new replica of the lost ones. The difficult part is that figdout which files were lost in a
potentially large repository can be problematic.

The other aspect of fault tolerance is related to the ckemter communication, typically
based on TCP connections between clients and serversnahd,rootd case, also between server
nodes. The operational principles that we applied rigdyoaie:

¢ A client must never return an error if a connection breaksafor reason (network glitches,
etc), unless it failed after having retried for a certain temof times and/or failed to find an
alternate location where to continue.

e The server can explicitly signal every potentially long @i®n, so that the client goes into
a pause state from which it can be woken up later. This avamb to deal too much with
timeouts.

e Every inter-server connection is kept alive and eventuadhgstablished if it seems to be
broken.

Data Access in HEP Fabrizio Furano

3. MORE ABOUT STORAGE GLOBALISATION

The other interesting item related to the recent WAN-ogdnfeatures of the Scalla/xrootd
suite is the possibility of building a unique repositoryymqmosed by several sub-clusters residing
in different sites.

The xrootd architecture, based on a B-64 tree where serversrganised (or self-organise)
into clusters [5], accommodates by construction the fatsbrvers can connect across a wide area
network, provided that the communication protocol whichreects them is robust enough. All this
is accomplished with the introduction of a so-cali®@ta-managehost, which the remote sites
subscribe to. This new role of a server machine is the clietriygoint of a uniquemeta-cluster
which contains all the subscribed sites, potentially spedaewhere.

Of course, one important requirement is that the remote areactually able to connect to this
meta-manager and that each storage cluster is accessibiettie other sites, but, an even more
important one is that all the sub-clusters expose the satmereot name space. In other words,
a given data file must be exported with the same file name evemay and, of course, the data
servers must be accessible from outside.

With the possibility of accessing a very efficient coheraqasitory without having to know
the location of a file in advance because the location taskmslled by the storage system, we
can implement many ideas. For instance, this mechanisming hised in the storage elements
belonging to ALICE in order to quickly fetch a file that was poged to be present on a storage el-
ement but for some reason is not accessible anymore. Thpagraph better explains the details
of this kind of system and synthetically shows how this idganed in a way that is completely
transparent to the client that requests the file.

4. THE VIRTUAL MASS STORAGE SYSTEM

As said, the set of Wide Area Network related features of tal&Xrootd system played a
major role in opening the possibility to evolve a storage@ysin the direction of being able to
exploit Wide Area Networks in a productive way. The majorigeshallenge was how to exploit
this in order to augment the overall robustness and usefsiloia large distributed storage deploy-
ment.

The idea of letting data processing jobs access remote agetaot new in the ALICE computing
framework. For instance, this is the default way that thecpssing jobs have to access the so-
called “conditions data”, which are stored in a Scalla/Xdsbased storage cluster at CERN. Each
processing job accesses 100-150 conditions data files @@ concurrent jobs are considered
a normal activity): historically the WAN choice always pealitself a very good one, with a sur-
prisingly good performance for that task, and a negligibiife rate.

On the other hand, the AliEn software [14], supported by é@st@l services, already gives
some sort of unique view of the entire repository, implenmgnhamespace coherence across dif-

Data Access in HEP Fabrizio Furano

ferent sites by mapping the file names using a central rel@tidatabase. Moving towards a model
where the storage coherence is given by the storage systelfn #nd does not need external sys-
tems, would give an additional benefit to this key componédnthe ALICE computing. This
advantage would be in the form of a performance enhancerbehglso it would avoid the fact
that an external system (like a relational database) cafwyotonstruction, keep easily track of
the data files which can be lost due to malfunctioning disks.alkeady discussed, the form of a
“metadata catalog” is by definition immune to this, and, ia tecent times, the ALICE computing
is slowly moving in this direction.

An additional consideration is that, from a functional padhview, we considered as a poor
solution the fact that, once a missing file is detected, ngtis done by the storage system to fetch
it. This is especially unfortunate when, for instance, thetfiat is missing in a site is available in
a well-connected one, and pulling it immediately (andckly) could be done without letting the
requesting job fail.

A careful consideration of all these aspects led to thinkivag there was a way to enhance the
ALICE Scalla/Xrootd-based distributed storage in a waycktautomatically tries to fix this kind
of problems, and at the same time does not disrupt the exidésign, allowing for an incremental
evolution of the storage design, distributed across skaérest independent sites contributing to
the project.

The generic solution to the problem has been to apply theviiatlg principles:

e All of the xrootd-based storage elements are aggregatedaininique worldwide meta-
cluster, which exposes a unigue and namespace-coherenofibeir content;

e Each site that does not have tapes or similar mass storagensysonsiders the meta-cluster
as its mass storage system. If an authorized request forsanguifile comes to a storage
cluster, then it tries to fetch it from one of the neighbouesras soon and as fast as possible.

The host which manages the meta-cluster (which in the $Xatlatd terminology is called
meta-managgrhas been calledLICE Global redirector and the idea for which a site sees the
global namespace (to which it participates with its contastits mass storage backend has been
calledVirtual Mass Storage SystefdMSS).

In this context, we consider as very positive statementéitts that:

¢ In the xrootd architecture, locating a file is a very fast tégkhe location is unknown to a
manager server, finding it takes, in average, only a netwaukd-trip time plus one local
file system lookup);

¢ No central repositories of data or metadata are neededdonéithanism to work, everything
is performed through real-time message exchanges;

¢ All of the features of the Scalla/Xrootd suite are preserand enhanced (e.g. scalability,
performance, etc.);

10

Data Access in HEP Fabrizio Furano

ALICExglobal redirector

Missing a file?
Ask to the global redirector
Get redirected to the right
collaborating cluster, and
fetch it.

Figure 2: An exemplification of the Virtual Mass Storage System.

e The design is completely backward compatible, e.g. in théCh_case no changes were
required to the complex software systems which constihgecomputing infrastructure;

Hence, the system, as designed, represents a way to deplogxarcise a global real-time
view of a unique multi-Petabyte distributed repository imiscremental way. This means that it is
able to give a better service as more and more sites upgraiestbrage clusters and join in.

Figure 4 shows a generic small schema of the discussedexrthi#. In the lower part of the
figure we can see three cubes, representing sites with aaS@albtd storage cluster. If a client
instantiated by a processing job (on the leftmost site lalgbSI1) does not find the file it needs to
open, then the GSI cluster (see picture) pauses the cliehasks the global redirector to get the
file, just requesting to copy the file from it. This copy redqu@ehich is just another normal xrootd
client) is then redirected to the site that has the neededwitéch is copied immediately to the
leftmost site. The previously paused job can then contitaiprocessing as if nothing particular
had happened.

Hence, we could say that the general idea about the VirtuasNs¢orage is that several distant
sites provide a unique high performance file system-lika datess structure; they constitute some
sort of cloud of sites that collaborate in order to:

e Make some recovery actions automatic;

e Give an efficient way to move data between them, if this featam be used by the overall
system.

5. CONCLUSION AND CURRENT DIRECTIONS

By using the two mechanisms described (the possibility fi€iefitly accessing remote data
and the possibility of creating inter-site meta-clusteng)ny things become possible, as these are

11

Data Access in HEP Fabrizio Furano

very generic mechanisms that encapsulate the techresdtitit are not linked in any way to partic-
ular deployments.

For example, building a true and robust federation of sites starts becoming much easier and ef-
ficient. For instance, one site could host the storage paothar one could host the worker nodes,
without having to worry too much about the performance lasstd the latency of the link between
the sites. Or both might have a part of the overall storageappéar as one, without having to deal
with (generally less stable and very complex) “glue codedriaer to build an artificial higher level
view of the resources.

So far, all the tests and the production usages have beerswecgssful, from the points of view
of both performance and robustness. We believe that prayitiie possibilities of having a storage
system able to work acrosss WANSs properly and efficiently isagor accomplishment that will
give many benefits, especially when dealing with user-leveractive data processing.

As discussed, the features that allow this kind of approaelgaite generic, and it is foresee-
able that other systems will follow a similar technologipath.
With respect to the consistency between catalogues andtih& @ontent of the remote site, other
approaches are possible, for instance trying to updateairtiree the content of the catalogues
every time an inconsistency is detected. This approactddoeila very interesting addition, that
could also complement the VMSS approach, trying insteacttichfthe file that was supposedly
lost. In this case, both the catalogues and the storagensysteuld have a way to fix their content
and/or propagate changes.

Other aspects worth facing are those related to the sodcaterage globalisation”. For in-
stance, a working implementation of some form of latencytmn-aware load balancing would
be a very interesting feature for data analysis applicatiarthe need to access remote files effi-
ciently. At the present time, the xrootd load balancing gthm, indeed, only considers the load
of the servers (network throughput and CPU consumption) metaic in order to decide where
to redirect a client. As always, the challenge would be ndy tmprovide one more feature, but
to provide it in a way which is compatible with the requirertseefor extreme performance and
scalability.

References

[1] Howard JH et al. Scale and performance in a distributedsfiistemACM Transactions on Computer
Systemss, Feb, 1988.

[2] Bar-Noy A, Freund A, Naor JS. On-line Load Balancing in @tdrchical Server Topology.
Proceedings of the 7th Annual European Symposium on Alhgosit1 999.

[3] Lustre: a scalable, secure, robust, highly-availablster file system.
http://mwww.lustre.org/ [July 2009]

[4] The Scalla/xrootd Software Suite.
http://savannah.cern.ch/projects/xrootd
http://xrootd.slac.stanford.edu/ [July 2009]

12

Data Access in HEP Fabrizio Furano

[5] Furano F, Hanushevsky A. Managing commitments in a MAdfent System using Passive Bids.
iat,pp.698-701lEEE/WIC/ACM International Conference on Intelligent Ag&echnology (IAT'05)
2005.

[6] Hanushevsky A, Weeks B. Designing high performance datass systems: invited talk abstract.
Proceedings of the 5th international Workshop on SoftwaitRerformancéPalma, llles Balears,
Spain, July 12 - 14, 2005). WOSP '05. ACM, New York, NY, 267/2B0I=
http://doi.acm.org/10.1145/1071021.1071053.

[7] Dorigo A, Elmer P, Furano F, Hanushevsky A. Xrootd - A Highcalable architecture for data access.
WSEAS Transactions on Computekpr. 2005.

[8] Hanushevsky A. Are SE architectures ready for LHZ8ceedings of ACAT 2008: XlI International
Workshop on Advanced Computing and Analysis Techniqudsyisi¢d Research.
http://acat2008.cern.ch/ .

[9] Furano F, Hanushevsky A Data access performance thrpagtilelization and vectored access. Some
results. CHEPQ7: Computing for High Energy Physiceournal of Physics: Conference Series 119
Volume 119 (2008) 072016 (9pp)

[10] ROOT: An Object-Oriented Data Analysis Framework
http://root.cern.ch [July 2009]

[11] Ballintijn M, Brun R, Rademakers F, Roland G. DistribdtParallel Analysis Framework with
PROOF.
http://root.cern.ch/twiki/bin/view/ROOT/PROOF . [JUu&p09]

[12] The BABAR collaboration home page.
http://www.slac.stanford.edu/BFROOT . [July 2009]

[13] The ALICE home page at CERN
http://aliceinfo.cern.ch/ . [July 2009]

[14] ALICE: Technical Design Report of the Computing. Ju@®2. ISBN 92-9083-247-9.
http://aliceinfo.cern.ch/Collaboration/DocumentsRiComputing.html

[15] Betev L, Carminati F, Furano F, Grigoras C, Saiz P. Thé@& computing model: an overviewhird
International Conference "Distributed Computing and Gt&thnologies in Science and Educatipn™
GRID2008, http://grid2008.jinr.ru/

[16] Feichtinger D, Peters AJ. Authorization of Data AcciesBistributed Storage SysteniBhe 6th
IEEE/ACM International Workshop on Grid Computjr&05.
http://ieeexplore.ieee.org/iel5/10354/32950/01542F8f?arnumber=1542739 [July 2009]

[17] the IEEE Computer Society’s Storage System Standaxat&ivig Group.
http://ssswg.org/ [January 2009]

[18] Patterson RH, Gibson GA, Ginting E, Stodolsky D, ZeledkInformed prefetching and caching.
Proceedings of the 15th ACM Symposium on Operating Systencsdhes, 1995.

[19] Hierarchical storage management, From Wikipediaftbe encyclopedia
http://en.wikipedia.org/wiki/Hierarchical_storageanagement [July 2009]

[20] ALICE Grid Monitoring with MonALISA. Realtime monitdng of the ALICE activities.
http://pcalimonitor.cern.ch/ [July 2009]

13

