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1. Introduction and the Statistical Challenge

The Large hadron Collider (LHC) is colliding a huge amount of Protons with each other. The
Standard Model describes the interactions in nature and is able to predict the outcome of these
collisions. There is only one ingredient of the Standard Model which was not discovered yet and
its existence is crucial for the completeness of the model. This is the particle that acquire mass to all
fundamental particles in nature, it is called the Higgs Boson. From the statistical point of view there
are two hypotheses being tested here. One is the Standard Model without the Higgs Boson (denoted
by H0 and referred to as "background-only"), and the other one is the Standard Model including
the Higgs Boson (H1 referred to as the "signal" or "signal+background" hypothesis). The difficulty
in testing the hypotheses is that most of the collisions give rise to a data which is compatible with
the H0 hypothesis. It is only, once per a Billion collisions or so, that the yet undiscovered Higgs
Boson is expected (H1).

The first step in the hypothesis testing is to state the relevant null hypothesis and then try to
reject it. Rejecting the H0 hypothesis in favor of the H1 hypothesis is considered a discovery. On the
other hand, rejecting the the H1 hypothesis in favor of the H0 hypothesis is interpreted as excluding
the Higgs Boson.

This writeup does not aim to cover the basic definitions and various techniques of statistical
hypotheses inference. Those were covered elsewhere [1]. Rather, we prefer to emphasize some
statistical issues which are relevant mainly to High-Energy physics. In section 2 we elaborate on
the look elsewhere effect which is one of the main issues in high-energy discovery physics. In
section 3 we explain the difficulties in statistical high-energy exclusion. Finally in section 4 we
show the equivalence between Bayesian and frequentist Profile-Likelihood exclusion.

2. Frequentist Discovery and the Look Elsewhere Effect

The statistical significance that is associated to the observation of new phenomena is usually
expressed using a p-value, that is, the probability that a similar effect or larger would be seen
when the signal does not exist (a situation usually referred to as the null or background-only H0

hypothesis). A p-value of 2.87 · 10−7 is traditionally associated with discovery (this is equivalent
to a 5 σ one sided effect). It is often the case that one does not a-priory know where the signal will
appear within some possible range. In that case, the significance calculation must take into account
the fact that an excess of events anywhere in the range could equally be considered as a signal. This
is known as the “look elsewhere effect” [2]. A straightforward way of quantifying this effect is by
simply running many Monte-Carlo simulations of background only experiments, and finding for
each one the fluctuation with the largest significance that resembles a signal. While this procedure
is simple and gives the correct answer, it is also time and CPU consuming, as one would have to
repeat it O(107) times to get the p-value corresponding to a 5σ significance. In [3] the effect was
studied to its full scope. Here we briefly review the analysis and its results.

Consider a gaussian signal with a fixed width on top of a background that follows a Raleigh
distribution in the range [0,100]. An example pseudo-experiment is shown in Fig. (1).

We assume that the background shape is known but it’s normalization is not, so that it is a free
parameter in the fit (i.e. a nuisance parameter), together with the signal location and normalization.
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Figure 1: An example pseudo-experiment showing the fit components.

We use a binned profile likelihood ratio as our test statistic, where the number of events in each bin
are assumed to be Poisson distributed with an expected value

E(ni) = µsi(m)+βbi (2.1)

where µ is the signal strength parameter, si(m) corresponds to a gaussian located at a mass m, β is
the background normalization and bi are fixed and given by the Raleigh distribution. For simplicity
of notation we will use in the following s = {si} and b = {βbi}. The hypothesis that no signal
exists, or equivalently that µ = 0, will be referred to as the null hypothesis, H0. µ̂ and b̂ will denote
maximum likelihood estimators while ˆ̂b will denote the conditional maximum likelihood estimator
of the background normalization under the null hypothesis.

In a fixed mass scenario one is only interested in looking for a signal at some specific, pre-
defined mass m0. The test statistic in this case is defined using the likelihood ratio evaluated at the
pre-defined mass,

t f ix =−2ln
L ( ˆ̂b)

L (µ̂s(m0)+ b̂)
. (2.2)

where L is the likelihood function. The distribution of the test statistic t f ix under the null hypoth-
esis, f (t f ix|H0), is expected to follow a chi-square distribution with one degree of freedom at the
large sample limit, due to the well known theorem by Wilks [4] . If the observed test-statistic is
t f ix,obs, the significance of the observation can be expressed via the observed p-value

p f ix =
∫

t f ix,obs

f (t f ix|H0)dt f ix (2.3)

This p-value is related to the probability to observe a result as or less compatible with the background-
only hypothesis. In other words it is the probability that the background will fluctuate at this mass
point, as or even more than the observed fluctuation. The distribution of t f ix under H0 is shown in
Figure 2 (blue full line).
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Figure 2: The distributions of the test statistics t f ix (blue full line) and t f loat (red dash line) under the null
hypothesis. The distribution of t f ix closely follows a χ2 with one degree of freedom.

If one does not a-priory know the location of the signal, any signal-like fluctuation of the
background, anywhere in the mass range, could be considered as a discovery. The probability for
the background to fluctuate anywhere in the mass range is obviously bigger than its probability to
fluctuate at a specific mass point. The ratio between the two probabilities is called the trial factor,
i.e.

trial# =
panywhere

p f ix
(2.4)

In order to give precise meaning to panywhere we must specify a search procedure, or equiva-
lently a test statistic that will be used to measure the compatibility of the data to a signal hypothesis,
when the signal location is not known. The most natural procedure would be to scan the entire
range, in steps that are sufficiently smaller then the mass resolution, and select the point for which
the signal likelihood is the largest, namely that maximizes (2.2). This is tantamount to including
the mass as a free parameter over which the likelihood is maximized in a “floating mass" fit. The
test statistic would be therefore

t f loat =−2ln
L ( ˆ̂b)

L (µ̂s(m̂)+ b̂)
(2.5)

where m̂ is the mass point that globally maximizes the likelihood, i.e. the maximum likelihood
estimator of m. The distribution of t f loat under H0 is also shown in Figure 2 (dashed red line).

When generating background-only experiments we usually find, as would be expected, that
there are several local maxima of the likelihood ratio as a function of the mass m. such an example
is shown in Fig. (3).

The average number of local maxima is naturally proportional to the ratio of the mass range to
the mass resolution, as shown in Fig.(4).

〈N〉 ∼ mass range
mass resolution

(2.6)
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Figure 3: A background-only experiment with a few local maxima (here shown as local minima of the
inverse likelihood ratio). The maximum Likelihood occurs around m = 58 units.
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Figure 4: The average number of local maxima as a function of the thumb rule number: mass-range/mass-
resolution.

If we divide the mass range to several regions such that each contains a single local maximum,
we might expect Wilk’s theorem to hold for each region separately. This is because in each region
the likelihood function has, by construction, a single local maximum. In that case, the values of the
test statistics at the local maxima would distribute as a χ2 with two degrees of freedom, since now
both µ and m can be regarded as parameters of interest. This point, while not rigorously proved,
was first demonstrated in [5], where it was shown that the distribution of t f loat can be reproduced
to a very good approximation by taking the maximal of several χ2 variates. In our case we find
similar results. We use this observation as a starting point from which we estimate the trial factor.
Denote the values of the test-statistic at the local maxima by t(i)f loat , i = 1...N, such that

t f loat = max
i
[t(i)f loat ] (2.7)
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A straightforward analysis ([3] shows that for small enough values of p
χ2

2
( the χ2

2 p-value), one
can approximate

P(t f loat > t)' p
χ2

2
〈N〉 (2.8)

Thus the p-value of the floating fit test statistic is approximately equal to the p-value of a χ2

with two d.o.f, times the average number of local minima. Note that this approximation is valid
when

p
χ2

2
〈N〉 � 1 (2.9)

that is, as 〈N〉 becomes large the approximation requires p
χ2

2
to become correspondingly small.

Using the above result, we can easily estimate the trial factor (2.4). We distinguish however
between two scenarios for which the definition of the trial factor may be slightly different:
case(a). In this case we have an observed data set with some observed value of t f loat with corre-
sponding maximum likelihood estimators µ̂ and m̂. We wish to estimate the significance of this
measurement. The “true" p-value is:

p f loat =
∫

t f loat,obs

f (t f loat |H0)dt f loat (2.10)

while the “local p-value” can be defined as the probability that a background fluctuation at the
observed mass m̂ will give an equal or larger value then t f loat,obs

(note that t f loat,obs = t f ix,obs(m0 = m̂)). This probability is

p f ix =
∫

t f ix,obs(m̂)
f (t f ix|H0)dt f ix (2.11)

i.e. this corresponds to the fixed mass scenario, had the pre-defined mass m0 would have been set
equal to m̂. The trial factor is defined as the ratio of two above probabilities,

trial#observed =
p f loat

p f ix
(2.12)

The two p-values defined above are shown as the shaded areas in Fig. (5) (left plot).
Using the approximation we obtained for small p-values (high significance), and with p f ix =

p
χ2

1
from Wilk’s theorem, we have

trial#observed '
p

χ2
2
〈N〉

p
χ2

1

(2.13)

for high significance we can also approximate p
χ2

1
with 1√

tobs

√
2
π

e−tobs/2, while p
χ2

2
is exactly

given by e−tobs/2. We therefore have

trial#observed ' 〈N〉
√

π

2
√

tobs = 〈N〉
√

π

2
Z f ix (2.14)

where Z f ix is the quantile of a standard gaussian with the same p-value (i.e. number of stan-
dard deviations). The trial factor is therefore proportional to the fixed mass significance, and to the
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average number of local minima.

case(b). Here we want to estimate the experiment expected sensitivity for a discovery, given
some signal hypothesis. We have a Monte-Carlo prediction of the expected number of background
and signal events for some hypothesized mass value m0, and we wish to estimate the median sig-
nificance of the experiment, assuming the true mass is equal to m0. The median p-value is:

p f loat,med =
∫

t f loat,med

f (t f loat |H0)dt f loat (2.15)

where t f loat,med is the median value of t f loat . The median of the local p-value is defined as the
probability that a background fluctuation at m0 will give an equal or larger value then the median
value of t f ix(m0) , i.e. :

p f ix,med =
∫

t f ix,med(m0)
f (t f ix|H0)dt f ix (2.16)

and the trial factor is defined as the ratio between the two above probabilities,

trial#expected =
p f loat,med

p f ix,med
(2.17)

The two p-values defined above are shown as the shaded areas in Fig. 5 (right plot).
It can be shown that for high significance, t f loat,med ' t f ix,med +1 [6]. Using the same approx-

imations as before we have p f loat,med ' 〈N〉e−t f loat,med/2 = 〈N〉e−t f ix,med/2 1√
e , therefore

trial#expected ' 〈N〉
√

π

2e
Z f ix (2.18)

Both trial factors are increasing with the significance as can be seen in Figure 6.
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Figure 5: Demonstration of the p-values (shaded areas) used to define the trial factors in case a (left) and b
(right).

We find empirically (Fig. 4) that the relation between the average number of local maxima
〈N〉 and the thumb-rule number is such that

trial#observed '
1
3

range
resolution

Z f ix (2.19)

and equivalently

trial#expected ≈
1

3
√

e
range

resolution
Z f ix (2.20)
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Figure 6: The trial factors as a function of the fixed mass significance Z f ix.

and the approximation is found to be good for a significance & 2.
More complicated scenarios, in which e.g. the mass resolution depends on the mass, may

occur. In that case one should not expect the same relation between 〈N〉 and the thumb-rule number
as above (namely, roughly one local minimum per three signal widths). Such cases, are dealt in
detail in [3] where the result is still that asymptotically, the trial factor grows linearly with the (fixed
mass) significance.

3. Frequentist Exclusion and CLs

Exclusion of a signal with a strength µ occurs when the signal+background hypothesis Hµ

is rejected at the 95% Confidence Level. This means that the observed p-value under Hµ (pµ ) is
less than 5%. The procedure could be standard, except for the fact, that, a downward fluctuation
in the expected background could lead to exclusion of very weak signals (low cross section) to
which the experiment has no sensitivity. The CLs method for setting upper limits was originally
introduced in high energy physics as a generalization of the conditional interval proposed by Zech
[8] for the single channel counting experiment. In that case, given an observation of nobs events,
the confidence level is defined according to the p-value:

P(n < nobs|s+b,nb < nobs) =
P(n < nobs|s+b)

P(nb < nobs)
=

P(n < nobs|s+b)
P(n < nobs|b)

(3.1)

where nb is the (unknown) number of background events in the sample. This is the probability,
given nb < nobs , to observe nobs or less events, assuming some signal rate s. Confidence intervals
constructed from conditional probabilities as above are referred to as conditional intervals. In
the context of setting upper limits on an unknown signal rate, considering such probability seems
to be more relevant to the question one is trying to answer, compared to the unconditional one,
P(n < nobs|s+ b). This is because we do not want the answer to be affected by how unlikely the
background fluctuation is, when we know that such an unlikely fluctuation has occurred. As a
consequence, large downwards fluctuations of the background do not lead the exclusion of very
small signals. CLs was then defined as a “generalization” of the above p-value to more complicated
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cases, by simply replacing the right-hand side of (3.1) with the corresponding generalized p-values
[9]:

CLs =
P(qµ > qobs

µ |µ)
P(qµ > qobs

µ |0)
(3.2)

Where qµ is some test statistics corresponding to a hypothesized signal strength µ .
One of the main objections to CLs is the fact in the transition from (3.1) to (3.2), the frequentist

meaning of the construction is lost, namely that it is not clear what is the conditional probability,
analogous to the left-hand side of (3.1), that CLs is equal to (or if such probability exists at all). In
general, however, there is no reason why an analogue of the conditional probability could not be
constructed to begin with. Such a construction may be or may not be equal to CLs, but it will retain
the original frequentist meaning of (3.1).

As an example for such a construction we consider a general likelihood ratio test statistic in
the large sample limit, where the sampling distributions can be approximated by the asymptotic
limit of Wald [12]. We then consider the quantity

∆µ = µ̂−µ (3.3)

where µ̂ is the maximum likelihood estimator of µ (for which the true value is unknown).
Since µ is assumed to be positive, ∆µ is constrained by the data to be

∆µ ≤ µ̂
obs (3.4)

and we define the p-value of the data to be the conditional probability

P(qµ > qobs
µ |µ,∆µ ≤ µ̂

obs) =
P(qµ > qobs

µ |µ)
P(∆µ ≤ µ̂obs)

(3.5)

In the limit we are considering, µ̂ is normally distributed around µ and the distribution of
∆µ is independent of µ . Furthermore qµ is a monotonically decreasing function of µ̂ [6]. The
denominator of (3.5) can be therefore replaced with

P(∆µ ≤ µ̂
obs) = P(µ̂ < µ̂

obs|0) = P(qµ > qobs
µ |0) (3.6)

which leads to the definition (3.2) of CLs. Therefore when the large sample approximations
can be used, CLs can be interpreted as the frequentist conditional probability (3.5). Practically, the
conditional probability can be taken into account by modifying pµ to

pCLs
µ =

pµ

1− p0
(3.7)

4. The Equivalence between Bayesian and Frequentist Exclusion

In the Bayesian approach we assign a degree of belief to the signal and background with priors,
π(µ) and π(b). Let µ be the signal strength, the posterior probability for µ is given by

p(µ|data) =
∫

L (µs+b)π(µ)π(b)db∫ ∫
L (µs+b)π(µ)π(b)dµdb

(4.1)

9



P
o
S
(
A
C
A
T
2
0
1
0
)
0
0
7

Statistics Challenges in HEP Eilam Gross

To set an upper limit on the signal strength , µ , one calculates the credibility interval [0,µ95]

0.95 =
∫

µ95

0
p(µ|data)dµ (4.2)

Improper flat priors are used in High Energy Physics. For example quoting ref [7]:Because there is
no experimental information on the production cross section for the Higgs Boson, in the Bayesian
technique we assign a flat prior to the total number of selected Higgs events. We do not justify the
use of flat priors here. However, if one uses flat priors one finds using the saddle-point approxima-
tion

p(µ|data) =
∫

L (µs+b)db∫ ∫
L (µs+b)dµdb

=
elnL (µs+ ˆ̂b)

elnL (µ̂s+b̂)
=

L (µs+ ˆ̂b)
L (µ̂s+ b̂)

(4.3)

There is therefore an equivalence between the Bayesian posterior probability and the profile likeli-
hood ratio when using flat priors.

5. Conclusions

Statistical methods used for discovery and exclusion of signal at the LHC and the TEVATRON
were described. We showed a full formalism of the Look Elsewhere Effect. Formulas were derived
that allow the estimation of the effect from the simple fixed mass result without the need to perform
complicated Monte Carlo simuations. We have shown that the CLs method could be interpreted as
a frequentist method. We have also shown that deriving Bayesian upper limits with flat priors is
equivalent to using a frequentist Profile Likelihood.
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