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1. Introduction

Nowadays there are two crucial problems in particle phystos search for the Higgs particle
or more generally the unravelling of the mechanism of symynateaking and the nature of Dark
Matter (DM). The Higgs particle, responsible for symmetngdking, is the cornerstone of the
Standard Model (SM) and of some of its extensions. As longasiiggs particle escapes detection
there will be a missing link in our understanding of the nataf fundamental interactions and the
SM will be incomplete. As concerns the nature of DM we arerfgca different issue: there is
robust experimental evidence for DM, yet we have no addili@vidence for the existence of a
stable massive particle which can play the role of DM. Fas the have to consider extensions of
the SM and assume an additional discrete unbroken symnh@tgxampleZ,. This symmetry not
only allows the lightest particle of the new physics moddbécstable but it also usually makes this
model conform more naturally with current data.

Let's review briefly the experimental evidence for dark raatFirst, the radial dependence of
rotation curves of galaxies give strong evidence for DM.iggprotation curves in spiral galaxies
show a plateau at a distance of several kpc from the galaetite;; see Figl(a). The numerical
value of the velocity at large distances is significanthgéarthan expected assuming only visible
matter. Furthermore such a plateau implies a gravitatiomads that increases linearly with the
galactic radius, this does not corresponds to the distdbutf visible matter. The rotation curve
for the Milky Way allows to estimate the density of DM in therBarbit. This gives a value of
Pom ~ 0.3GeV/cn® for the local density. This number enters the computatiothefsignals for
DM direct and indirect detection that will be described belo
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Figure 1. a) Measured rotation curve for the N6503 galaxy togethan edttimations of the contribution of
the halo, disk and galactic gas to the rotation velocity ljéd$. b) Temperature fluctuations measured by
WMAP. The DM density is extracted from the second peak.

Very precise estimates of the amount of DM were obtained floe\WMAP measurement
of fluctuations in the microwave background temperaturg[1Temperature fluctuations, Figl(b),
are connected to fluctuations in the gravitational potéintishe time of last scattering. Because
ordinary matter is in a plasma at high temperatures, it cdrgaoerate such fluctuations. Precise
numerical analyses of WMAP results allow to extract theltdésity of DM patrticles in the time



Tools for Dark Matter in Particle and Astroparticle Physics Alexander Pukhov

of last scattering. Assuming that the number of DM partitias not changed since then we should
have now a DM density aroundseV/m®. More precisely,

on? — pz“" — 0.1099:+ 0.0062
C

where p. is the critical density. This amount of DM is in good agreeineith simulations of
large structure formation in Universe. Indeed baryonictaratself is not able to create galaxies
because of the fast expansion rate of the Universe. Becadgeadicles have to be non-relativistic
at the time of last scattering time, from WMAP measuremems can estimate its mass to be
Mpm > 10KeV. This is sufficient to rule out neutrinos as the main componébBM. Therefore itis
necessary to extend the SM to explain the nature of DM. Theisgeneasurement 6ih? provides

a powerful mean to discriminate various extensions of thetl& propose a DM candidate.

There are three kinds of astroparticle experiments whitdwaih principle to detect DM par-
ticles and measure some of their properties. First, exparimfor indirect DM detection such as
PAMELA [3, 6], HEAT [4], AMSO01 [5], Fermi [7, 15], ATIC [8], HESS [9, 13, 14] INTEGRAL
[10], Veritas[11], EGRET[12] try to observe the productsiifl self annihilation in the galactic
halo. The SM patrticles that are produced in this annihifeti@l decay to stable particles including
y, €, p(p) and neutrinos. Indirect detection experiments searchasifynfor e*, p, y as thee™
and p channels suffer from a very large background and the neutignal is expected to be low.
Interpreting the results of indirect detection experinsengijuires a good understanding of both the
background caused by galactic sources as well as the seumftigalactic magnetic fields respon-
sible for the propagation a§" and p. For instance, the excess of positrons recently observed by
PAMELA can be caused either by some exotic DM or some galaoticce like supernova. Further-
more large uncertainties in the signal can be caused by gpgltnucture in the DM distribution
(this can increase the signal by a factor 20).

Direct detection experiments such as Edelweiss[16], DAMA[CDMS[18, 20], Xenon [19,
21], Zeplin[22] or Cogent[23] measure the recoil energyhe huclei that would result from an
elastic DM - nucleus collision in a large detector. To redtloe cosmic rays background such
detectors are located deep underground. We should memt&nDAMA has for several years
found a positive result, such a signal has not yet been coedifmy other experiments [17].

High energy neutrinos produced as a result of the annibitatif DM patrticles captured in
the center of the Sun and the Earth, are searched by SupecKamle [24], Antares [25] or
IceCube [26]. The rate of DM annihilation inside the Sunt&ahould be equal to the rate of DM
capture by the Sun/Earth. These experiments are therdfoikusto direct detection experiments
where the Sun or the Earth plays the role of the large detedibese experiments have not yet
observed DM events.

Dark matter can also be detected in accelerators such agtat¢rdn or the LHC. Despite the
fact that the direct production of DM patrticles has a smatkesrsection and that the DM particle
escapes the detector without leaving a track, a DM particlédcbe detected at LHC. Indeed such
particle appears in the decay chains of new particles thrabealirectly produced at a collider and
its signature is a large amount of missing energy [30]. Ilhé&fiore possible that the LHC will soon
shed light on the two fundamental problems in particle ptg/sHiggs and dark matter.
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2. Short review of theoretical models for DM

Many extensions of the SM that can provide a DM candidate baes proposed. The best
studied and most popular models among these are supersyimmedels: the minimal supersym-
metric model MSSM [32, 31] and its extensions such as the NM3] and the CPVMSSM [34].

In these models R-parity conservation guarantees thdistaifithe DM particle. In models with
flat or warped extra dimensions [37, 38], some parity thatddpon the field in extra dimensions
is responsible for the stability of DM. Furthermore there arodels with extended gauge or Higgs
sectors [42, 43] as well as little Higgs models [39, 40, 4h]tHese models the DM candidate can
be either a Majorana fermion, a Dirac fermion, a vector bosoa scalar.

3. Calculations needed for DM analyses.

Because of the large number of astroparticle experimerddtanlarge number of theoretical
models we need software tools for the computation of DM prtigee and DM detection rates in
different experiments. The general theoretical formutasDM calculations are available in the
review [27]. Detailed relic density calculations in the M@8an be found in [28, 29] while direct
detection formulas including loop corrections and sulilegderms was obtained in [36]. The
different tasks which have to be solved are

e Calculation of DM relic densityThe formalism to calculate the DM density using the freeze-
out mechanism and based on the DM annihilation cross sectvas developed in [28, 29].
One has to solve a differential equation that gives the teatpes dependence of DM den-
sity. The dependence on the underlying model appears viealcalation of the thermally
averaged cross section for DM annihilation. A rough estiomgjives a value for the annihi-
lation cross section aroundl(v)v =~ 1pb-c. This corresponds to a typical weak interaction
cross section. Nevertheless agreement with WMAP resutiaglly constrain the parameters
of the patrticle physics model. In addition to DM anihilatiprocesses, processes involving
other particles that are odd under the discrete symmetrywdrabe masses are just above
that of DM also contribute to the effective cross sectiorcsiaventually all these particles
will decay into the DM and some other particles. The large benof processes involved
and the fact that a priori the matrix elements needed aremmik means that relic density
calculations in a generic model of Dm can be challenging.

e Calculation of DM - nucleon cross sectionshese are required for the prediction of rates
in direct detection and neutrino telescope experimentsthénstandard case one needs to
compute the DM-nuclei scattering amplitude in the limit ofadl momentum transfer. This
is obtained from the DM-nucleon amplitude which is in turlated to DM-quark amplitudes.

e Calculation of indirect detection signaln addition to the calculation of the DM annihila-
tion cross section, the computation of the spectra of ptgtpasitrons and antiprotons are
required. The initial spectra can be easily obtained everm fgeneric model. For this one
has to calculate all 2> 2 annihilation cross sections and extract hee™ and p spectra
using Pythia. The 2» 2+ y processes also might have to be taken into account[35]. The
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propagation o&" andp can be done by solving the diffusion equation by the Greeotfon
method. A more precise treatment as well as the computafitimedbackground require a
Monte Carlo simulation.

e Calculation of low energy constraintSeveral experimental data restrict the parameter space
of SM extensions even though they are not directly relatdalMoobservables. These include
precision measurements such as the muon anomalous magrwetient,g — 2, or rareB-
decays for examplb — sy,Bs — u™ u~—. In most cases the theoretical prediction require the
computation of higher order processes involving Feynmagrdims at the loop level. These
are not completely automatized yet.

e LEP and Tevatron constraint$ligh energy collider experiments are probing the SM and its
extensions. Their results can be used to put constrainteeoRliggs mass, on new channels
in Z decay and on the mass of heavy exotic particles incluthiegsupersymmetric partners
of SM particles.

e Calculation of LHC and ILC signal3he computation of signals associated with new par-
ticles produced at colliders include the matrix elementwaltion for the production and
for the decays of the new particles as well as Monte CarlogoBpace integration and cuts
implementation. Several tools have ben developed to partbese tasks.

4. Review of software for DM calculation

There are several public codes used in DM calculations wiviete designed for the study of
physics beyond the SM, for a review of the different tools [&% 54]. Several codes perform the
computation of the particle mass spectrum in supersymmatddels, indeed large loop correc-
tions are generic and need to be taken into account. Thess @so solve the renormalization
group equations in supersymmetric scenarios with fundémhgrarameters defined at the GUT
scale. Four codes were developed in the framework of the MSEBMSUSY [47], Isajet [58, 57]
and SPheno [46], while NMSSMTools [49] and CPsuperH[45] deth extensions of the MSSM.
These codes also compute various low energy and collidestiaonts. A special file interface
SLHA [51, 52] was designed for these programs. This interfacilitates their use in DM related
code. The package HiggsBounds [50] was designed for telsEigand Tevatron accelerator con-
straints on the Higgs sector in generic models. Such cantdrare available in NMSSMTools and
Isajet but only for the specific class of models they support.

A very important tool for analysis of indirect detection eximents is the GALPROP[55]
program. It gives a numerical solution for the differentgjuation that describes the propagation
of different kind of particles in the galactic magnetic figldAlthough this code is rather slow it
allows to take into account both DM signals and backgrourdogja sources at the same time.

There are four public codes for DM studies in supersymmednyperlso[59], IsaTools [58,
57] DarkSUSY [56] and micrOMEGAs [60, 61, 62]. All performelcomputation of the DM
relic density together with other observables that are maoessarily related to DM. Superlso is
a rather new code that is primarily dedicated to flavour pty/éi the MSSM, the SLHA is used
for interfacing spectrum calculators. IsaTools and DarBSUvere also both developed for the
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MSSM. They calculate the direct detection and indirect cieia rates as well as low energy and
accelerator constraints. IsaTools uses Isajet to compatgdrticle spectrum while DarkSUSY also
uses SuSpect or the SLHA. DarkSUSY also calculates theineutites from DM annihilation
in the Sun and the Earth, furthermore DarkSUSY includes tiopamation of cosmic rays. In
particular it is interfaced with GALPROP which allows to dyuboth signal and background in
indirect detection measurements. For MSSM applicatiorssk®USY is now the most complete
package. On the other hand IsaTools is based on Isajet, fmt@amputation of signals for SM and
its supersymmetric extensions at colliders and is thenfioost suited for DM accelerator studies.

micrOMEGAs is the only package for DM studies in generic egiens of the SM model.
Details of the techniques used in micrOMEGAs are explaimeithé next section. micrOMEGAs
computes the DM relic density, direct detection and indidetection rates. For the propagation
of e and p, micrOMEGAs uses a Green function method which describdbtie signals from
DM annihilation but does not allow to calculate the backgwbu The neutrino rate from capture
in celestial bodies is not yet implemented in micrOMEGAswLenergy and collider constraints
are provided for some models and the predictions of collgignals are obtained from CalCHEP
which is included in micrOMEGASs. The current version of nidMEGAS contains the MSSM,
NMSSM, CPVMSSM, the Little Higgs model [41], and a Dirac N DM model [44].

Comparisons of IsaTools/DarkSUSY/micrOMEGAs showed gagréement between the codes.
In fact such cross checks were used to remove several bulgesa packages.

5. Applications of automatic matrix element calculatorsfor dark matter studies.

In principle itis not necessary to use only one universagj@m to study DM properties in any
model. On the other hand once such a tool has been tested laugbeel for one specific extension
of the SM, it can rapidly and straightforwardly be used fdnestmodels as well. An automatic
approach therfore increases the reliability of the sofensard considerably reduces the time needed
for developing new software as well as the time requiredteniser to become familiar with a new
package.

As mentionned above the most important computer task nefedddM studies is the com-
putation of matrix elements of various reactions which edousome specific model of particle
physics. In the last years several automatic calculatoraaifix elements were developed: Com-
pHEP [63], CalcHEP[64], FeynArts/FormCalc [65, 66, 67], d@aph[68, 69], Sherpa[70], and
Omega [71]. In principle any of these could be used for DMteslacalculations in a generic
model. Currently the idea of automatic matrix element gatien for DM observables in a generic
model is realized in full scope only in the micrOMEGASs packadhis approach was first applied
for the computation of the relic density [60]. In [61] a nurneal algorithm for the calculation
of the spin-dependent and spin-independent DM-nucleoritutgs relevant for direct detection
was proposed and implemented. This algorithm which can pkesipto a generic model replaces
the usual symbolic computation of amplitudes by means atFidentities. Recently in [62] an
automatic approach for calculating the spectra of DM sdfiilaifation in the galaxy was designed
and takes into account processes with additional photdatiad [35].

The key point in micrOMEGASs’ approach to DM calculations e tgeneration of shared
libraries with matrix element codes. The calculation ohadltrix elements that enter a relic density
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calculation is computer time consuming and requires a lalisik space [56]. However for any
particular set of model parameters in general only a smathber of annihilation channels are
needed. micrOMEGAS therefore generates the code only éochinnels as they are needed, links
them dynamically and stores them on the disk for subsequeageu

Note that the idea of using automatic calculators in DM cadas also realised in IsaTools and
Superlso albeit only in the context of the MSSM. In IsaTo@empHEP was used for generating
(co-)annihilation cross sections while Superlso relied~egnCalc to evaluate the cross sections.
In principle both these codes can be generalized for otheletso

6. Conclusion

Several tools for the calculation of DM properties and DVhsilg for current and future exper-
iments are now available. The currently most developedsade DarkSUSY and micrOMEGAs.
The existence of several independent codes is very imgddaaross checking the results and for
understanding uncertainties which result from differexghinical implementation of the same al-
gorithms. There are several auxiliary tools designed ferdbmputation of the particle spectra and
couplings as well as for calculation of low energy and highrgy constraints. The development
of interface protocols for data exchange between such amglis needed.
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