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In the last few years, the graphics processor units (GPUs) have moved away from the traditional
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rithms in CUDA and compared the performance and scalability on different NVIDIA cards.
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1. Introduction

In the last few years, the graphics processor units (GPUs) have moved away from the tradi-
tional fixed-function 3D graphics pipeline toward a flexible general-purpose computational engine.
Moreover they are getting cheaper and more powerful [1]. With the Nvidia Compute Unified
Device Architecture (CUDA) [2], one can get orders-of-magnitude performance increases over
standard multi-core processors, while programming with a high-level language such as C [1].

2. CUDA

CUDA, is freely available and the CUDA development tools work alongside the conventional
C/C++ compiler, so one can mix GPU code with general-purpose code for the host CPU (figure 1).
CUDA automatically manages threads, i.e. does not require explicit management for threads in the
conventional sense, which greatly simplifies the programming model. However, developers must
analyze data structure and determine how to divide the data into smaller chunks for distribution
among the thread processors. The GPU is especially well-suited to address problems that can be
expressed as data-parallel computations i.e. the same program is executed on many data elements in
parallel. Because the same program is executed for each data element, there is a lower requirement
for sophisticated flow control; and because it is executed on many data elements and has high
arithmetic intensity, the memory access latency can be hidden with calculations instead of big data
caches
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Figure 1: Mixing CPU and GPU code

CUDA extends C by allowing the programmer to define C functions, called kernels, that,
when called, are executed N times in parallel by N different CUDA threads, as opposed to only
once like regular C functions. The CUDA Toolkit provides a reasonable set of tools for C language
application development. This includes:

e nvcc C compiler

e CUDA FFT and BLAS libraries for the GPU
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Profiler

gdb debugger for the GPU

e CUDA runtime driver (also available in the standard NVIDIA GPU driver)

CUDA programming manual

2.1 CUDA programming model

GPU is viewed as a compute device operating as a coprocessor to the main CPU (host). A
CUDA program consists of several phases that are executed on either the host (CPU) or a device
(GPU). The phases that exhibit little or no data parallelism are implemented in host code. Typically,
a program supplies a single source code encompassing both host and device code and the NVIDIA
C Compiler (NVCC) separates the two. The host code is straight ANSI C code and is compiled with
the host’s standard C compilers and runs as an ordinary process, while the device code (Kernel) is
compiled by the NVCC and executed on a GPU device. Calling a kernel involves specifying the
name of the kernel plus an execution configuration i.e. defining the number of parallel threads in
a group (Thread block) and the number of groups to use when running the kernel for the CUDA
device (Grid) (figure 2 ). Threads in a block can cooperate together, efficiently share data through
the so called shared memory. However, threads in different blocks in the same grid cannot directly
communicate with each other.
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Figure 2: Kernel execution on GPU
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2.2 CUDA memory model

CUDA exposes all the different types of memory on the GPU( figure 3 ):

Block (0, 0) Block (1,0

Th»dm.ul—‘ ‘rhr-ad:'l.l;‘ Emﬂ,n;‘ Thread (1, 0)

eSS | N |

Figure 3: Memory model of NVIDIAs GPU

During their execution, threads may access data from different memory spaces on a GPU
device. Each thread has a private local memory. Each thread block has a shared memory visible
to all threads of the block and with the same lifetime as the block. All threads have access to the
same global memory. Moreover, threads can access two additional read-only memory spaces; the
constant and texture memory spaces. Global, constant, and texture memory spaces lie in the same
physical memory, however they are optimized for different memory usages. Constant and texture
memories are read-only and accessible by all threads in a grid.

2.3 GPU threads and CPU threads

The main differences between GPU and CPU threads can be summarized as following:

e GPU threads are extremely lightweight

e CPUs can execute 1-2 threads per core, while GPUs can maintain up to 1024 threads per

multiprocessor (8-core)

e CPUs use SIMD (single instruction is performed over multiple data) vector units, and GPUs
use SIMT (single instruction, multiple threads) for scalar thread processing. SIMT does not
require developers to convert data to vectors and allows arbitrary branching in threads.
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3. FairRoot

The FairRoot framework [3, 4, 5], is an object-oriented simulation, reconstruction and data
analysis framework based on ROOT [6] and the Virtual Monte-Carlo (VMC) interface [7]. It
includes core services for detector simulations and offline analysis. The framework, is designed
to optimize the accessibility for beginning users and developers, to be flexible (i.e. able to cope
with future developments), and to enhance synergy between the different physics experiments at/or
outside the FAIR project.

3.1 CUDA integration into FairRoot

The integration of CUDA into FairRoot is done in two steps, which will be describe in the
following sections.

3.1.1 Building System

Using FindCuda.cmake [8] CUDA is integrated into FairRoot building system very smoothly.
The users do not have to take care of Makefiles or which compiler should be called (e.g. NVCC or
GCCQC). The script will search for CUDA toolkit and SDK installation using several standard paths
and the environment variables which are created by the CUDA installer. Depending on the results
of the search the building system will include the CUDA files in the build process or not. Optionally
one can also include the CUDA files without even having the hardware (emulation mode [9]).

3.1.2 FairCuda: ROOT interface

An interface is implemented which enables the use of GPU’s implemented function from
within a ROOT CINT session. The CUDA implemented kernels are wraped by a class (FairCuda)
that is implemented in ROOT and has a dictionary. From a ROOT CINT session the user simply
call the wraper functions which call the GPU functions (kernels).

4. Track propagation

4.1 Runge-Kutta propagator

The Geant3 algorithm based on Runge-Kutta method for solving the kinematic equations
(Nystroem algorithm [10] ) was ported to CUDA. The algorithm it self is hardly parallelizable,
however, one can propagate all tracks in an event in parallel. For each track, a block of 8 threads is
created, the particle data is copied by all these 8 threads at once, then one thread do the propagation.
The use of 8 Threads is only meant to accelerate the copy process between the global and shared
memory.

4.2 Field map in Texture memory

Field maps are typically used as three dimensional look up tables with some interpolation
algorithm to give the field value between the points. The distance between the points is usually so
chosen that a linear interpolation is accurate enough to give reasonable values for the field. In this
work the dipole field in the PANDA [11] experiment was used. The field map (three dimensional
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array) is bind to the texture memory of the device, in this memory the field is accessible from all
threads in the grid. Moreover, the linear interpolation of the field is done by a dedicated hardware
[9]. The out of range texture coordinates is set to CLAMP mode [9], i.e: out-of-range texture
coordinates are clamped to the valid range. (Values below 0 are set to 0 and values greater or equal
to N are set to N-1).

5. Hardware

Cards with different number of cores (from 16 up to 240 cores) were used to investigate the
scalability of the code. The specification of the hardware (GPU devices ) used in this work are

summarized in table 1.

Card Qaudro | GeForce | GeForce Tesla
NVS 290 | 8400 GT | 8800 GT | C1060
CUDA Cores 16 32 112 240
2x38) (4x8) (14x8) | (30x8)
Memory (MB) 256 128 512 4096
Frequency (GHz) 0.92 0.94 1.5 1.3
Compute capability 1.1 1.1 1.1 1.3
Warps/Multiprocessor 24 24 24 32
Max. No. of threads 1536 3072 10752 30720
Max Power Consumption (W) 21 71 105 200

Table 1: Hardware used

6. Results

To make the test, protons with 1 GeV where generated and send with different starting angles
through the field. Different events where generated by changing the number of protons per event.
The tracks (protons) in each event where propagated at once through the dipole field (1.5 meter
distance between starting and final plane). The results obtained for different cards and events are
summarized in table 2.

The Gain in performance for different cards and events is summarized in table 3. The gain was
calculated by dividing the CPU time over the GPU time.

7. Conclusion

CUDA permits working with familiar programming concepts while developing software that
can run on a GPU. Using GPUs for track propagation one can win orders of magnitudes in perfor-
mance compared to the CPUs, however one has to choose carefully on which level the paralleliza-
tion should take place and how to divide the data into smaller chunks for distribution among the
thread processors (GPUs). In this work we choose to parallelize on track level, by our previous
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Track/Event | CPU | Qaudro | GeForce | GeForce | Tesla
NVS 290 | 8400 GT | 8800 GT | C1060
10 2.4 0.9 0.8 0.7 0.4
50 11 2.5 1.8 1.0 0.4
100 21 4.4 2.9 1.7 0.5
200 42 8.9 5.6 2.9 0.9
500 104 23 13.2 5.6 1.3
1000 210 42 25.7 10.1 1.9
2000 412 82 52.2 19.5 3.0
5000 1054 200 125 50.0 6.0

Table 2: Time in ms needed to propagate all tracks in one event

Track/Event || Qaudro | GeForce | GeForce | Tesla
NVS 290 | 8400 GT | 8800 GT | C1060
10 3 3 3.5 6
50 44 6 11 28
100 4.8 7.3 12.3 47
200 4.8 7.5 14.5 49
500 4.5 7.9 18.5 80
1000 5 8.1 21 111
2000 5 8 21 137
5000 5 8.4 21 175

Table 3: Gain in performance for different cards

work [12] we choose to parallelize on hit level for track fitting. Finally understanding the different
memory regions of the GPU is also crucial for getting better performance and help in simplifying
some problems.
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