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Recently, many-core accelerators are developing so fast that the computing devices attract re-
searchers who are always demanding faster computers. Since many-core accelerators such as
graphic processing unit (GPU) are nothing but parallel computers, we need to modify an exist-
ing application program with specific optimizations (mostly parallelization) for a given accelera-
tor. In this paper, we describe our problem-specific compiler system for many-core accelerators,
specifically, GPU and GRAPE-DR. GRAPE-DR is another many-core accelerators device that is
specially targeted scientific applications. In our compiler, we focus a compute intensive problem
expressed as two-nested loop. Our compiler asks a user to write computations in the inner-most
loop. All details related to parallelization and optimization techniques for a given accelerator are
hidden from the user point of view. Our compiler successfully generates the fastest code ever for
astronomical N-body simulations with the performance of 2.6 TFLOPS (single precision) on a
recent GPU. Another successful application on both GPU and GRAPE-DR is the evaluation of a
multi-dimensional integral in quadruple precision. The program generated by our compiler runs
at a speed of 15 QD-GFLOPS on GPU and 4 QD-GFLOPS on GRAPE-DR. The performance
obtained so far is more than 50-200 times faster than a conventional CPU.
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1. Introduction

The rise of many-core accelerators such as Cell and GPU opens a new way of high performance
computing. An important question is what types of practical applications are efficient on many-
core accelerators. Our simple answer is a problem that requires high compute density. Even in
Cell and GPUs with the external memory bandwidth at ∼ 100 GB s−1 or more, the memory-wall
problem is quite severe since the raw performance of these processors (> a several 100 GFLOPS )
is very high compared to the memory bandwidth. Applications that allow repeated reuse of data or
applications with high compute density are the most efficient on many-core accelerators (and also
on general purpose CPUs).

A well-known example of this type of applications is a many-particle simulation. In astro-
nomical many-particle simulations, the most time consuming part is the evaluation of mutual force
between particles:

f i =
N

∑
j=1

m j(xi − x j)
(|xi − x j|2 + ε2)3/2 , (1.1)

where xi, mi, ε are position of a particle, the mass, and a parameter that prevents division by zero,
respectively. Given a number of particles N, this force evaluation requires O(N2) complexity but
other part of the simulations, such as orbit integration, requires only O(N) complexity. It was shown
that one can do the evaluation of mutual force very efficiently with an accelerator device called
GRAPE (GRAvity piPE) [1, 2]. This O(N2) direct summation force evaluation is fundamental to
the modeling of dense star clusters that are collisional system. Note that there is an O(NlogN)
method [3] for collision-less system like galaxy and cosmological simulations but the method is
not applicable to star clusters.

The GRAPE system is widely used in astronomical community. It is a specially designed com-
puting system to calculate Newtonian gravity between particles expressed in Eq.(1.1). In GRAPE
system, all calculations except computation of Eq.(1.1) are done on a host computer that controls
GRAPE system. The host computer sends xi and mi to GRAPE and receives results f i. In other
words, only the most computing intensive part of many-particle simulations is computed on the
specially developed component. Apparently, this same work division technique is applicable to a
system with GPU ([4] and many others). Note O(N2) direct summation force evaluation is very
effective for many-core accelerators because in this evaluation each element of data is reused O(N)
times.

A class of applications with high compute density is dense matrix multiplication. To compute
square matrix (N × N) multiplication, we require 2N3 operations with a naive implementation.
In other words, each element of data is reused O(N0.5) times. Although compute density of the
dense matrix multiplication is not as high as the force evaluation, it is effective to utilize many-
core accelerators. In the recent TOP500 benchmark1, which heavily rely on the dense matrix
multiplication, two systems with many-core accelerators were spotted on 2nd (Cell) and 5th (GPU).

In this paper, we report our implementation of O(N2) force evaluation scheme on many-core
accelerators. Furthermore, we apply our O(N2) scheme to an evaluation of the Feynman path
integral arises in the particle physics. A direct computation of the Feynman path integral is numer-
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ically unstable with double precision (DP) operations because of its divergent nature. So a solution
to this difficulty is that we compute the integral with quadruple precision (QP) operations [5]. If
we implement QP operations with the emulation scheme by [6] and [7], which utilizes DP units
for emulation, one QP variable is expressed as a sum of two DP variables so that one QP addition
and multiplication requires 20 and 23 DP operations, respectively. Thus, it is expected that the
peak performance of QP operations is at least 20 times slower than its DP performance. Thus, the
evaluation of the integral is a highly time consuming task. We show that many-core accelerators
are effective to evaluate a simple one-loop integral with the QP emulation scheme.

2. Architecture of Many-core Accelerators

In this section, we briefly describe many-core accelerators we used in the present work.

2.1 GPU: Cypress Architecture

The Cypress GPU from AMD/ATi is the company’s latest GPU with many enhancements for
general purpose computing on GPU (GPGPU). It has 1600 arithmetic units (called a stream core),
each of which is capable of executing single precision floating-point (FP) multiply-add. At the time
of writing, the fastest Cypress processor is running at 850 MHz and offers a peak performance of
1600×2×850×106 = 2.71 Tflops.

Moreover, these units are organized hierarchically as follows. At one level higher from the
stream cores, a five-way very long instruction word (VLIW) unit called a thread processor (TP)
that consists of four simple stream cores and one transcendental stream core. Therefore, one
Cypress processor has 320 TPs. The TP can execute either at most five single-precision/integer
operations, four simple single-precision/integer operations with one transcendental operation, or
double-precision operations by combinations of the four stream cores. A unit called a SIMD en-
gine consists of 16 TPs. At the top level, there are 20 SIMD engines, a controller unit called an
ultra-threaded dispatch processor, and other units such as units for graphic processing, memory
controllers and DMA engines. An external memory attached to the Cypress is 1 GB GDDR5 mem-
ory with a bus width of 256 bit. It has a data clock rate at 4800 MHz and offers us a bandwidth of
153.6 GB sec−1.

We program the Cypress GPU through an assembly like language called IL (Intermediate
Language). The IL is like a virtual instruction set for GPU from AMD/ATi. With IL, we have full
control of every VLIW instructions. A code written in IL is called a compute kernel.

2.2 GRAPE-DR Architecture

GRAPE-DR (Greatly Reduced Array of Processor Elements with Data Reduction) is a spe-
cially developed many-core accelerator for applications in Astronomy. It has 1024 FP arithmetic
units. A half of the units are double precision (DP) addition units and another are SP multiplication
units. Logically, we program 512 add/mul units in SIMD-way to do useful calculations. GRAPE-
DR is designed to optimize to compute a force summation like Eq.(1.1) as schematically shown
in Figure 1 (see [8] for detailed internal structure of GRAPE-DR). With clock speed of 380 MHz,
a performance of one GRAPE-DR chip is 195 GFLOPS in DP operations and 390 GFLOPS in
SP operations, respectively. The GRAPE-DR is programmable but not fully programmable unlike
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Figure 1: Schematic view of the GRAPE-DR system. It consists of two parts: a host computer and GRAPE-
DR chip(s). GRAPE-DR chip has 512 processing elements (PE). A PE is a unit of computing components
in GRAPE-DR which has own local memory (LM) and arithmetic units (DP add, SP mul and integer ALU).
Every 32 PE is grouped to constitute a broadcast block (BB) unit. Each BB unit has a memory component
(broadcast memory; BM) that is shared by all 32 PEs, namely, all PE simultaneously read a same data. When
we view this memory read operation from BB, it is a broadcast of a data from BM to all 32 PEs. Note in the
figure, we depict 1 BB unit that hosts 8 PEs.

other many-core accelerators such Cell and GPUs. Its architecture and memory system is simpli-
fied to support only limited types of applications. Many-particle simulations, which are considered
to be compute intensive, are very efficiently executed on GRAPE-DR.

2.3 A Compute Model of Many-core Accelerator

After the introduction of new GPUs like Cypress, it turns out that the GRAPE-DR is very
similar to such recent GPUs. In the present work, we treat GRAPE-DR and Cypress GPU are
logically same system as described below (see Figure 1). Based on this compute model, we have
developed a special compiler system for GRAPE-DR and Cypress GPU. Reference [9] could be
consulted for a detailed description of our compiler system.

Our logical many-core accelerator has far many FP arithmetic units working in SIMD-way.
Each arithmetic unit has own local memory. The local memory corresponds to general purpose
registers on each TP in the Cypress and registers and LM on each PE in the GRAPE-DR, respec-
tively. In the GRAPE-DR, all PEs are connected to the broadcast memory that is shared by all
PEs. Main purpose of the broadcast memory is that all PEs can load the same data efficiently. The
Cypress has similar shared memory components but in the present work we do not use the shared
memory components. Instead, we regard a read cache memory as replacement of the broadcast
memory. The cache memory on the Cypress works effectively like the broadcast memory.
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for i = 0 to N-1

s[i] = 0

for j = 0 to N-1

s[i] += f(x[i], x[j])

Figure 2: A simple nested loop to computer a general force calculation.

3. O(N2) force summation on many-core accelerators

In this section, we describe how we use many-core accelerators to compute a general force
summation. It is expressed with the following equation:

si =
N

∑
j

F(ai,bi,c j,d j...), (3.1)

where F is a function that evaluates a value from input variables ai,bi,c j, ... and si is a summation
result. If input variables ai,bi,c j, ... are vector components of a position of a particle and mass of the
particle, this equation is reduced to gravity force equation in Eq.(1.1). Also, for a given quadrature,
we can do a numerical integration with this formulation by regarding ai,bi, ... as integration points
and function F as integrand. Another trivial application is to compute a complicated function for a
very large number of times. This typically arises in a Monte Carlo integration scheme. In this case,
we do not take summation over variables.

Suppose we implement a program to compute the general force summation like Eq.(3.1). This
can be simply calculated by a nested loop as shown in Figure 2 (a). To map this nested loop on
many-core accelerators, we unroll the outer loop as shown in Figure 3 (b) and assign computations
of each inner loop for x[i] to processors on an accelerator. The loop unrolling is a standard
technique on general purpose CPUs to enhance compute density by reducing required memory
bandwidth and also by latency hiding for arithmetic units. If we unroll the outer loop by n ways,
the number of times x[j] loaded is reduced by a factor of n. On a general purpose CPU, n is
limited to 4 - 8 at most due to a small number of registers (typically ∼ 16 - 128 in DP words).
However, many-core accelerators we consider here have more than 100 FP arithmetic units and
each arithmetic unit has 32 - 128 registers. So we can regard an aggregate number of registers is
1000 - 5000. Therefore we can unroll the loop by roughly 200-500 ways provided that a many-
core accelerator has memory component shared by all arithmetic units or cache memory. This
greatly reduced required memory bandwidth is the key to efficiently utilize many-core accelerators.
Specifically, in the example here, x[i] is reused repeatedly whole time during the inner loop and
each x[j] is used once during the inner loop but it is shared by n logical processors. The GRAPE-
DR is designed to be optimized to this unrolling technique. In the case of GRAPE-DR, all x[]
are stored on the broadcast memory (BM). The BM broadcasts each x[j] in each iteration for the
inner loop.

With the Cypress GPU, it is best to utilize 4-vector SIMD unit as much as possible for gaining
maximum performance. So one way to make 4-vector SIMD unit on each TP busy is to unroll the
inner loop of force calculation in 4 ways as shown in Figure 4.
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for i = 0 to N-1 each 4

s[i] = s[i+1] = s[i+2] = s[i+3] = 0

for j = 0 to N-1

s[i] += f(x[i], x[j])

s[i+1] += f(x[i+1], x[j])

s[i+2] += f(x[i+2], x[j])

s[i+3] += f(x[i+3], x[j])

Figure 3: Unroll i-loop in 4 ways. We assign computations of each inner loop for different i to four different
processors on a many-core accelerator.

for i = 0 to N-1 each 4

s[i] = s[i+1] = s[i+2] = s[i+3] = 0

for j = 0 to N-1 each 4

for k = 0 to 3

s[i ] += f(x[i ], x[j+k])

s[i+1] += f(x[i+1], x[j+k])

s[i+2] += f(x[i+2], x[j+k])

s[i+3] += f(x[i+3], x[j+k])

Figure 4: Unroll both i-loop and j-loop in 4 ways

4. Astronomical Application

We did an experiment to implement the force calculation loop Eq.(1.1) with the two schemes
shown in Figure 3 and 4 (see [10] for details). Precisely, we have implemented conventional equa-
tions expressed as

pi =
N

∑
j=1, j 6=i

p(xi,x j,m j) =
N

∑
j=1, j 6=i

m j

(|xi − x j|2 + ε2)1/2 ,

f i =
N

∑
j=1, j 6=i

f (xi,x j,m j) =
N

∑
j=1, j 6=i

m j(xi − x j)
(|xi − x j|2 + ε2)3/2 ,

(4.1)

where pi and f i are potential and force for a particle i, and xi, mi, ε are position of a particle,
the mass, and a parameter that prevents division by zero, respectively. In the most inner loop, by
simultaneously evaluating functions p and f , we require 22 arithmetic operations, which include
one square root and one division, to compute an interaction between particle i and j. Since previous
authors starting from [11] used a conventional operational count for evaluation of f i and pi, we
also adopt the conventional counts of 38 throughout the paper. In Figure 5, we plot a computing
speed of our optimized IL code for computing Eq.(4.1) as a function of N. We have obtained
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Figure 5: A performance of our O(N2) force evaluation scheme on various GPUs. RV770 is an old genera-
tion GPU architecture with 160 TPs.

∼ 2600 GFLOPS at N > 100000 on Cypress GPU running at 850 MHz. As far as we know, the
performance we obtained is fastest ever with one GPU chip.

5. One-loop Integral

A simple example of such integral is an one-loop integral expressed as

I =
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dzF(x,y,z),

F(x,y,z) = D(x,y,z)−2

D = −xys− tz(1− x− y− z)+(x+ y)λ 2

+(1− x− y− z)(1− x− y)m2
e

+z(1− x− y)m2
f . (5.1)

Here, s and t are parameters and me, and m f are physical constants. And λ is a fictitious photon
mass that is supposed to be zero so that accurate evaluation of this integral is actually very hard
due to its divergent nature [5]. In [5], they have reported that a combination of a multi-dimensional
integration scheme and an extrapolation scheme on λ [12] is necessary to tackle to this problem.

If we adopt the double exponential integral scheme, this integration is reduced to the three
nested summation, which requires ∼ 27N3 operations where N is a number of integration points
in one direction. Practically, given s and t, we need to evaluate the integral repeatedly for ∼ 20
times due to the extrapolation scheme. Accordingly, with N = 1024, a total number of required QP
operations for one evaluation is ∼ 6× 1011. Furthermore, we need to evaluates the integral with
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Add Mul Div
Cypress 21 25 53

GRAPE-DR 21 41 199

Table 1: A number of required DP operations to emulate a given QP emulation on Cypress GPU and
GRAPE-DR.

LMEM xx, yy, cnt4;

BMEM x30_1, gw30;

RMEM res;

CONST tt, ramda, fme, fmf, s, one;

zz = x30_1*cnt4;

d = -xx*yy*s-tt*zz*(one-xx-yy-zz)+(xx+yy)*ramda**2 +

(one-xx-yy-zz)*(one-xx-yy)*fme**2+zz*(one-xx-yy)*fmf**2;

res += gw30/d**2;

Figure 6: Source code for our compiler system to compute the integral in (5.1).

different combination of s and t. The number of combination is as large as ∼ 106. And there are
many other integrals, each of which corresponds to a specific condition. The good news is that
the QP emulation scheme is expected to be efficient on many-core accelerators due to its intrinsic
nature. That is one QP addition requires 4 DP variables as input and executes 20 DP operations to
obtain 2 DP variables. In other words, the QP emulation scheme is also quite compute intensive in
addition to many-particle simulations.

We have developed the QP emulation library for both the Cypress GPU and GRAPE-DR.
Table 1 shows a number of DP operations to emulate each DD arithmetic operations on Cypress
GPU and GRAPE-DR. In terms of the number of DP operation counts, the Cypress GPU is more
efficient than GRAPE-DR. We apply our O(N2) force evaluation scheme to compute this nested
summation. Given x and y, we compute the inner-most summation of Eq.(5.1) with our scheme.
We compute a several hundred combinations of x and y in parallel with a many-core accelerator.
With our QP emulation library, the Cypress GPU computes 320 combinations of x and y in parallel
for instance.

The definition of the integrand in the original Fortran code is written as 2 lines. The source
code for our compiler system to computer Eq.(5.1) is written as 9 lines including definitions of
variables that is denoted as LMEM, BMEM and, RMEM (Figure 6). Each of these lines defines input
LM variables, BM variables, and output LM variables. From this input source code, our compiler
generates assembly code for Cypress GPU and GRAPE-DR. The source code contains 26 add/mul
operations and 1 div operation. For Cypress GPU, the generated assembly language contains 319
VLIW instructions, which includes instruction related to data load and a loop operation. Since an
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N = 256 N = 512 N = 1024 N = 2048 clock
GRAPE-DR 0.21 1.21 7.83 55.1 380

Cypress 0.05 0.29 1.94 14.2 850
Core i7 7.39 59.0 472 — 2670

Table 2: The measured elapsed time to compute the integral in Eq.(5.1) with different integration points.
The last column indicates clock speed of processors in MHz.

expected number of VLIW instructions for 27 QP operations is roughly 26× (21 + 25)/2 + 53 =
651 operations, the Cypress VLIW architecture is very effective to the QP emulation scheme. For
GRAPE-DR, the generated assembly language contains 1226 instructions, which includes 40 nop
operations. In other words, a percentage of time during which arithmetic units are stalled is as
small as 3 %.

In Table 2, we present the elapsed time to compute the integral in Eq.(5.1) with different N.
We show the elapsed time for Cypress GPU running at 850 MHz and GRAPE-DR chip running
at 380 MHz. Additionally, we present the elapsed time with a conventional CPU (note this is a
result with single core of Core i7 running 2.67 GHz). Depending on the size of N, the measured
computing speeds are 13.0, 15.5, and 16.9 QD-GFLOPS for N = 512, 1024, and 2048, respectively,
for Cypress GPU. For comparison, in case of N = 1024, we have obtained 3.83 QD-GFLOPS
with GRAPE-DR and 63.7 QD-MFLOPS with Core i7 CPU. Here, we assume the total number
of QD operations is 28N3 (one division is equivalent to two add/mul operations). The Cypress
GPU shows impressive performance gain (> 200 times) compared to the conventional CPU. The
GRAPE-DR also shows good performance gain (∼ 60 times). Additional advantage of GRAPE-
DR is its low power consumption. Nominal power consumption of three architectures is ∼ 200
W for Cypress GPU, ∼ 60 W for GRAPE-DR, and ∼ 130/4 ∼ 33 W for Core i7 CPU. So, both
many-core accelerators show roughly similar performance per watt with this particular problem.

6. Conclusion

In this paper, we introduce a newly developed compiler system for high performance com-
puting using many-core accelerators. Accelerators are effective on specific problems that share a
certain pattern of calculations. Specifically, they are suited to calculations which allow repeated
reuse of data, and a calculation with high compute density.

Our novel programming model for such calculations is simple but sufficient to implement a
several important compute intensive applications such as many-particle simulations and the double
exponential integral scheme. More precisely, our compiler system generates highly efficient codes
for many-core accelerators Cypress GPU and GRAPE-DR. We have obtained ∼ 2.6 TFLOPS with
O(N2) force evaluation for application in astronomy. Also, we have shown that the QD emulation
scheme is well suited to the many-core accelerators and very power efficient. With Cypress GPU,
we have obtained ∼ 15 QD-GFLOPS that is more than 200 times faster than a conventional CPU
with single thread. Combined with the scheme proposed in [5], our compiler system is effective to
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utilize a desktop computer equipped with GPU/GRAPE-DR for computing more precise integral
value.

This work was supported in part by the Grant-in-Aid of the Ministry of Education (No.
20105005 and 21244020).
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