
P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
6

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Debbie: an innovative approach for the web-based
interface to the CMS Pixel Tracker configuration DB

Marco Rovere1

CERN

CH-1211 Genève 23, Switzerland

E-mail: marco.rovere@cern.ch

Dario Menasce

I.N.F.N. Milano- Bicocca

Piazza della Scienza 3, Edificio U2, Milano 20126, Italy

E-mail: dario.menasce@mib.infn.it

Abstract

The configuration of the CMS Pixel detector consists in a complex set of data that

uniquely define its startup condition and the optimized calibration constants. Since

several of these conditions are used to both calibrate the detector over time and to

properly initialize it for a physics run, all these data have been collected in a suitably

designed database for historical archival and retrieval. In this paper we present a

description of the underlying database schema with a particular emphasis on the

architecture and implementation of the web-based interface that allows for very

sophisticated browsing/editing operations of detector data using a graphical

representation of its topology. This interface employs state-of-art technology such as

Ajax transactions, SVG-based vector graphics and an extensive use of the Extjs

JavaScript library. The GUI represents a novel approach to web-based interfaces, since

it features a very complex set of widgets, dynamically generated on the fly upon user-

demand, thus mimicking the behavior of a stand-alone program specifically designed to

this extent, but avoiding portability and interactive-login issues for the latter solution.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research - ACAT 2010

Jaipur, India

February 22–27 2010

1
 Speaker

mailto:marco.rovere@cern.ch
mailto:dario.menasce@mib.infn.it

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
6

Debbie Marco Rovere

 2

 Introduction

The CMS pixel detector is a rather complex device consisting of about 16k readout

chips (ROCs) and several ancillary components, all of which must be properly

initialized and eventually calibrated before a physics run can be taken. The

configuration of a detector at any given time is described by suitable data structures

stored in a database for retrieval and historic archival. In this paper we describe the

interface to the CMS Pixel Detector Configuration Database, consisting in a set of

server procedures and a web browser client capable of very sophisticated interactive

manipulation of the data. Main feature of this client is the highly graphical and point-

and-click nature of the navigation tools offered to the user. To this extent we employed

state-of-the-art technologies such as Ajax transactions, SVG vector graphics and we

adopted the Extjs JavaScript framework to display large amounts of data in very

compact and efficient widgets.

1. The Pixel Detector

The Pixel Detector consists of two distinct components: a central barrel, made of

768 detector modules arranged into half-ladders of four identical modules each, and

four forward disks made of 672 detector modules of seven different sizes arranged into

blades. To read out the detector about 16 000 readout chips (ROCs) are bump-bonded to

the detector modules. Each ROC features 26 programmable registers to control its

behavior during calibration and readout: these data constitute part of the detector’s

condition dataset that will be described later. A complete description of the detector

layout can be found elsewhere[1].

1.1 The detector hierarchy: physical and logical topology

 A crucial requirement to define the status of the detector for calibration or data

taking at any given time is the ability to define partitions. A partition is a subset of the

whole detector that needs special treatment

(e.g. to be disconnected from readout).

Given the large amount of components

featured by the detector, it is often

cumbersome and tedious to specify long

lists of components to be partitioned. To

vastly improve the efficiency in this kind of

operation we designed our interface to

leverage the natural hierarchical structure of

the components that make up the detector.

The basic building block of the pixel

detector is the ROC. ROCs can be

assembled together into larger components

(plaquettes for the Forward and modules for

the Barrel, see fig. 1) which, in turn, can be

assembled in even larger components (such

as blades for the Forward and Ladders for
Figure 1

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
6

Debbie Marco Rovere

 3

the Barrel). While this hierarchy reflects the physical layout of the detector, it is

possible to build another hierarchical view based on the topology of hardware

connections of the readout chain. Small groups of ROCs are connected to ancillary

chips, called TBM, to synchronize the readout with the radiofrequency of the beam.

These, in turn, are connected to opto-electronic components to transform the analog

signal to be transmitted along fiber optic lines to the FED cards which constitute the last

component in the readout chain under the responsibility of the pixel detector. In both

cases, it is possible to define a partition by specifying the largest component in one of

these two hierarchical descriptions to automatically include all sub-components. This

behavior is complemented by a graphical point-and-click interface, described below,

which allow users to specify arbitrarily complex partitions in a very small time.

2. The detector configuration dataset.

A complete description of the detector condition at any given point in time is

called a configuration dataset. Such a dataset is divided into several, distinct,

components (KOCs, for Kind Of Conditions) each one encompassing different aspects

of the status of the detector. One KOC describes the status of individual ROCs (whether

they are included in the readout stream, biased, initialized and so on), another contains

the table of the 26 registers that specify each ROC’s behaviour. A map of topological

connections between electronic components is included as well, along with several

other KOCs. It is beyond the scope of this paper to describe these datasets in detail,

since their definition was assumed as a prerequisite of the design of our interface[2].

Crucial for the scope of this paper is to note that these KOC’s do not change all at the

same time: the configuration of the detector at a given time is a mixture of KOC’s

defined at different times. We will see that this implies sophisticated manipulation tools

to allow users to specify the correct KOC recipe of a configuration. The current

implementation of these configurations and their KOC components is a full-fledged

ORACLE database.

3. The overall architecture

Debbie consists in three main components: an ORACLE database, a custom-made

web server and a web client. We currently have two distinct databases running at

CERN, a development and a production one, which is not discussed here. The web

server is a C++ application, based upon the XDAQ[3] framework. This application

listens for user requests issued from a web browser as Ajax[4] transactions and responds

back with a payload of data selected from the DB repository. It basically acts as a

broker between user requests and the ORACLE database: its main feature is the ability

of formatting answers as XML or JSON data streams, suitable for immediate rendering

by the web client which issued the request. During an interactive session, users navigate

across detector components and visualize or change potentially large amounts of data.

These data are cached locally in the server: only the limited amount of data needed to be

rendered on the web client is actually transmitted back and forth between client and

server, thus reducing network latency, the amount of memory allocated by the client and

speeding up the overall navigation capability of the tool. Since this caching mechanism

violates the state-less characteristics of the connection to a web-server, only one user at

a time can connect to the server in read-write mode. A mechanism is in place to grant

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
6

Debbie Marco Rovere

 4

such an access for a limited time: before expiration users are prompted for eventual

renewal of the grant. Other users can still connect meanwhile, but only in read mode,

for monitoring purposes.

4. The navigation.

 The entry page of Debbie consists in a single widget to allow a selection of the

desired configuration to visualize or edit. This widget (see a snapshot in fig. 2) features

all the necessary tools to explore,

visualize, navigate and load the

configurations stored in the database.

An essential characteristic is the

paging and filtering mechanism: since

the list of available configuration is

already large and will grow over time

in the coming years, only a reduced

number of configurations is displayed

at any given time. When a user needs

to display more, a custom made

navigation bar at the bottom of the

page allows to request a new page, go

back to the previous or reach the first

or last page. Another very useful and

versatile tool for navigation is the

server-side filtering system that users can apply to the values represented in each

column of the spreadsheet-like table. To filter configurations based on their creation

time, a specialized calendar allow users to

specify a particular date or a time interval, as

shown in fig. 3. For columns containing a

string, such as the configuration alias, the filter

consists in a user-specified regualar

expression. This is very powerful since it

provides a very fine-grained tuning of filtering

capabilities. Last but not least, for numerical

columns, such as the configuration number, the

filter consists in a numerical value or a range

of values. Particular care has been taken to

provide users with a compact, yet intuitive

navigation tool. Once a user has chosen the

configuration he would like to work with,

several buttons allow for a preliminary visualization or manipulation: users can inspect

the definition of the chosen configuration in terms of its KOC components, a different

configuration can be selected searching for a specific combination of KOCs or by

searching where a particular KOC is referenced. Each of these tools pops up a specific

widget with the necessary elements to drive the selection. When a configuration is

requested, the server contacts the DB and pre-loads in its memory the minimum amount

of information needed to start a point-and-click navigation across the detector. As

Figure 2

Figure 3

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
6

Debbie Marco Rovere

 5

shown in fig. 4, a special emphasis is placed upon the purely graphical representation of

the detector. This allows users to

Figure 4: a collection of snapshots taken during navigation across the detector’s components

navigate across components by just point and click. There are exceptions to this

behaviour of course: to allow particularly sophisticated partitioning schemes of the

detector (such as disabling specific ROCs from the readout chain), auxiliary tools are

provided. One such tool is once again a regular expression filter to select specific

groups of components based upon a predetermined pattern.

5. Technical details

As mentioned in the introduction, the tool consists of a server, implemented in

C++ in the context of the XDAQ framework, and a client, running on a web browser,

implemented in a mixture of XHTML, SVG and JavaScript code. Additionally we rely

upon an additional infrastructure, implemented by the FNAL group and programmed in

Java, which is responsible of the loading of the XML-formatted data directly into the

ORACLE DB. The server is able to listen for user requests on a specified port: several

servers can run simultaneously on different ports, each one capable of handling requests

from several clients in read mode and one client in write mode. Each user request ends

up providing back to the originating client a payload of specially formatted data in

XML or JSON format. When the request results in a graphical element, this is

implemented as an SVG[5] payload, created by the server with the appropriate call

backs for interactive behaviour. An SVG content is formatted as an XML DOM and

allows for the SVG interpreter of a browser to be parsed, rendered and provide

interactive context for user. Therefore a JavaScript snippet, sent along with the SVG

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
6

Debbie Marco Rovere

 6

payload, can provide all the necessary mechanisms for user navigation. Wherever a

histogram is requested, the server provides the corresponding file (formatted as a png

file) and the client renders the plot in an appropriate widget build with EXTJS

components. The backend for histogramming is the ROOT[6] library.

6. Conclusions

A Pixel Configuration DB browser has been developed to aid users managing the

vast repository of the CMS Pixel Configurations. A client-server architecture is the

back-bone of the system, with a web-server in charge of handling users request to the

configuration database and a client, a regular web browser such as Firefox capable of

executing complex scripts provided by the server both as JavaScript snippets or SVG-

based graphics is in charge of handling the graphical representation of the detector and

responding to user input. The functionality is complemented by an ORACLE based

backend. Central to the design of the system are the concepts of point-and-click

navigation as well as selection of components through regular expressions. The latter

allow users to define arbitrarily complex partitioning of components for tasks such as

calibration or initialization of a subsample of the whole detector The detector

complexity is broken down in two possible views, a geometrical one, where emphasis is

on the physical location of components in space, and a topological one, where emphasis

is on the logical connection of electronic readout components. The system is currently

in use at the P5 area, next to the CMS detector, for regular every day use by personnel

on shift.

References

[1] The CMS experiment at the CERN LHC, 2008 JINST 3 S08004 (pag. 33)

[2] A. Ryd, K. Ecklund et al, The Configuration DB interface, Pixel Collaboration Internal Note

[3] J. Gutleber, L. Orsini, XDAQ, a platform for the development of distributed data acquisition

system, https://svnweb.cern.ch/trac/cmsos

[4] J.J. Garrett, Ajax: A New Approach to Web Applications,

http://www.adaptivepath.com/ideas/essays/archives/000385.php

[5] SVG: Scalable Vector Graphics http://www.w3.org/Graphics/SVG/

[6] ROOT: http://root.cern.ch/drupal/

https://svnweb.cern.ch/trac/cmsos
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.w3.org/Graphics/SVG/
http://root.cern.ch/drupal/

