
P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
7

 Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it

Parallelization of Neutron Transport Code ATES3 on

BARC’s Parallel System

Kislay Bhatt1

Scientific Officer ‘F‘

Computer Division, BARC, Trombay, Mumbai, INDIA

E-mail: kislay@barc.gov.in

Vibhuti Duggal

Scientific Officer ‘D‘

Computer Division, BARC, Trombay, Mumbai, INDIA

E-mail: vibhuti@barc.gov.in

Rajesh Kalmady

Scientific Officer ‘G‘

Computer Division, BARC, Trombay, Mumbai, INDIA

E-mail: rajesh@barc.gov.in

Anurag Gupta

Scientific Officer ‘F‘

Reactor Projects Design Division, BARC, Trombay, Mumbai, INDIA

E-mail:anurag@barc.gov.in

A Neutron Transport Code ATES3 (Anisotropic Transport Equation Solver in 3D), which was developed
at BARC for the deterministic solution of 3D steady-state neutron transport problems, has been

parallelized using Message Passing Parallel Programming model on BARC’s ANUPAM Parallel

Supercomputer. The most time consuming step in the code ATES3, which is transport sweep, was made

parallel using three different data-decomposition techniques, namely, parallelization in angular variable,

parallelization using Diagonal Sweep approach and in the third approach, optimization techniques are

being applied in Diagonal Sweeping. In the paper, we discuss the problem domain, parallelization

techniques used and present the performance figures obtained with each approach.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research - ACAT 2010

Jaipur, India

February 22–27 2010

1
 Presenter

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
7

Parallelization of ATES3 Kislay Bhatt

 2

1.Introduction

The most fundamental task in the design and analysis of a nuclear reactor core

is to find out the neutron distribution as a function of space, direction, energy and

possibly time. The most accurate description of the average behavior of neutrons is given by

the linear form of Boltzmann transport equation. Due to massive number of unknowns, the

solution of the transport equation imposes severe demands on computer processors / memory

and requires best of numerical and computational schemes.

The code ATES3
[1]

 (Anisotropic Transport Equation Solver in 3D) had been developed

in BARC for the deterministic solution of 3-D steady-state neutron transport problems. The

code makes use of advanced Krylov subspace based schemes for the solution. To use ATES3

for practical reactor core simulations, it has been parallelized on BARC’s ANUPAM
[2]

 Parallel

Supercomputer using Message Passing Parallel Programming model.

The most time consuming step in the ATES3 code is transport sweep, which was

targeted for the parallelization. We used three different data-decomposition techniques for

parallelization. In first phase, the parallelization was done in angular variable, which yielded

very good speed up. In second phase, Diagonal Sweep approach was followed, which couldn’t

give very good efficiency figures due to idleness of the participating processors. In the third

phase, we are trying to apply optimization techniques over Diagonal Sweep approach to

improve the efficiency by doing proper load balancing among the participating processors.

In the following sections, we discuss the compute-intensive part of the code, the

parallelization techniques used for parallelization of the target portion and present the speed-up

and efficiency figures obtained with each parallelization approach.

2.Program description

The general neutral particle transport equation has seven dimensions (3 in space, 2 in

directions, 1 each in energy and time). The most commonly used method to discretise the

angular variable Ω is the Discrete Ordinate (SN) method. Similarly other variables are also

discretised by appropriate schemes. The discretised transport equation is conventionally solved

by the well-known inner-outer iteration procedure. The code ATES3 was developed in-house

for the deterministic solution of steady-state neutron transport problems in 3-D Cartesian

geometry. One of the remarkable feature of the code is the use of Krylov subspace based

schemes for the solution, in addition to the conventional methods. This has resulted in

substantial CPU-time reductions and more accuracy. The code is written in Fortran-90/95 with

modular format and is user/developer friendly. The most time consuming portion of the code is

transport sweep, where iterations are performed one by one for each of the directions of neutron

motion under consideration. The iterations for different directions are independent of each other

and can be performed in parallel. Considering the inherent parallelism in the code, it was

decided to do parallelization on transport sweep. Three different data-decomposition techniques

were used for the parallelization, which are discussed in the following sections.

3.Angular Parallelization

The transport sweep part of the code takes 80% of the total execution time, where each

of the N angular directions of neutron motion are iterated one by one for calculation of partial

angular flux. Since, the calculations of angular fluxes in different directions are independent of

each other, therefore, in first phase, the parallelization was done in angular variable, which

yielded very good speed up with efficiency of 57% on 288 processors. In this technique of

parallelization, the master process reads the input data, which specifies the problem

configuration, and then constructs arrays representing the source, angular quadrature, material

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
7

Parallelization of ATES3 Kislay Bhatt

 3

composition and cross section data, and then broadcasts all necessary inputs to the slave

processes. Then all the processes, master as well as slaves, proceed with mesh sweeps along the

angles, statically assigned to them, and accumulate the contribution to the scalar flux in a local

array. At the end of all mesh sweeps, all participating processes accumulate their local arrays

into the new iterate array. The array accumulation is based on global reduce operations that are

implemented in two ways, one using MPI’s native global reduce operation and the second one

using Bucket Algorithm[3].

MPI’s global reduce operation is based on a spanning tree topology among the

participating processes. In this scheme, half the participating processes send their partial

contributions to the other half, that performs the sum, then half the remaining processes send

again, and so on. This is followed by a broadcast stage in which the new iterate is sent to all

participating processes along the same spanning tree topology described above. The main

advantage of this scheme is that it reduces the number of messages exchanged to a

minimum, a crucial benefit on platforms that possess high communication latency. On the

other hand, its disadvantages include a substantial idleness, as the number of active processes is

cut by half in each step of each of the two stages, and the additional idleness results if the

number of processes is not a power of 2.

Bucket Algorithm performs the global reduce operation on a monodirectional ring

topology. In this scheme, each of the participating processes start by passing a bucket

containing the subvector of its local contribution to the scalar flux to its neighbor along the

monodirectional ring. Each process then sums the subvector it just received into the

corresponding local subvector which contains its own contribution, then sends the bucket to its

neighbor, and so on. By the time each bucket has circumnavigated the entire ring, each process

will contain the completely updated iterate for its subvector. In the broadcast stage, each
process sends the new iterate subvector to its neighbor again along the monodirectional ring.

The bucket algorithm typically results in a larger number of messages than the spanning

tree scheme, however, it produces a smaller volume of data traffic that is not concurrent, hence

outperforming the MPI’s global reduce on platforms with small communication latency. The

main advantage of the Bucket Algorithm is that it does not constrain the number of

participating processes to powers of 2, thereby all but eliminating idleness if the number of
processes divides the number of angles. Its disadvantages include a greater number of

arithmetic operations, and of messages exchanged. In addition, it requires implementation by

the programmer since it is not available in standard MPI libraries.

The observed timings for transport sweep part of the code for test cases of Light Water

Reactors, with above mentioned Angular Parallelization approaches, are presented in the

following table. In the table, Ortho, TSA, Power and SI are abbreviations for different iterative

methods, where Ortho stands for ORTHOMIN(1), TSA stands for Transport Synthetic

Accelerations, Power stands for Power Iteration and SI stands for Source Iteration.

Plots for two particular cases from the above table are drawn and presented in figure-1, which is

placed on the last page of the paper.

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
7

Parallelization of ATES3 Kislay Bhatt

 4

4.Diagonal sweep

In the second phase of parallelization, a different approach called Diagonal Sweep

[4]

was followed. In this technique, the iteration starts from the corner cell, as shown in figure-2(a),

and in the successive iterations, the adjacent cells on the successive diagonal planes are solved.

Every cell on the sweep or diagonal plane is independent of all other cells on the same plane,

therefore, all the cells in a sweep plane can be processed in parallel. The sweeps for different

directions are also independent and can be processed in parallel. The number of cells per

diagonal plane follows the progression ‘1, 3, 6, 10, …’, which goes up to 3*N*N/4 and then

decreases in reverse order. Here, N is the number of meshes in each of the three dimensions in

the orthogonal grid. The maximum number of processors required in this scheme is 3*N*N/4,
which is equal to the number of cells in the biggest diagonal plane in the grid.

We tried diagonal sweeping in two ways. In the first case, an outer loop was

implemented to iterate over the directions of neutron motion and an inner loop was

implemented to iterate over the successive diagonal planes. Iteration from one diagonal plane to

the successive one requires inter-process communication. In this method, as we increased the

number of directions from 24 to 288, the inter-process communication also increased linearly

and we could not get any speedup. Then we tried another way, where, in the outer loop we

implemented iterations over the diagonal planes and in the inner loop, iterations were

implemented over the directions. This way, the inter-process communication reduced

drastically, as the intermediate flux calculations for all the directions in a cell were done in one

go and stored in an array. This array was communicated to the cells in the successive plane

during the next outer iteration. Thus, there was very minute effect of increase in number of

directions on communication overheads.

With the currently available computational resources in the organization, we could try a

problem of size N=10, considering 288 directions of neutron motion, on 75 processors and

achieved the speedup of around 5x over the sequential program. In this scheme, most of the

participating processors remain idle for almost half of the time, so, we couldn’t get a good

efficiency figure with this approach. There was a need of optimizations in this approach for

proper load-balancing across the employed processors. We applied one optimization technique

on Diagonal Sweep, which is briefed in the following section.

5.Optimized Diagonal Sweep

In the third phase, we applied an optimization technique on Diagonal Sweeping to

utilize the participating processors efficiently. For this, the problem domain was decomposed

block-wise among the processors using Volumetric decomposition
[5]

 technique, as seen in

figure-2(b). In this scheme, all the cells in one cubical block are handled by one processor. On

the boundaries, inter-process communication is required to move data from an `upstream' cell

on one processor to an adjacent `downstream' cell on another processor, where which cells are

upstream and downstream depends on the sweep direction.

Since, we decomposed the grid in 8 blocks, we tried a problem of size N=180 and 288

directions on 8 processors. Due to too much communication overheads and search operations

involved in this technique, we could achieve speedup of 2x over the sequential run. Efforts are

still going on to optimize the inter-process communication and other overheads.

6.Conclusion and Future work

In the paper, we presented parallelization techniques applied to transport sweep in the

ATES3 code. Up till now, the parallelization techniques were tested for reactor simulations

involving isotropic scattering. Subsequently, similar techniques will be tested for problems

involving anisotropic scattering. The so-called whole-core simulations, which do not involve

P
o
S
(
A
C
A
T
2
0
1
0
)
0
3
7

Parallelization of ATES3 Kislay Bhatt

 5

approximations such as spatial homogenization of fuel assemblies, are extremely CPU-

intensive. It is planned to perform these calculations explicitly with large number of meshes,

without the spatial homogenization, on a future larger ANUPAM parallel system at BARC.

References

[1] Anurag Gupta and R.S. Modak, ATES3: Anisotropic Transport Equation Solver in 3D, Proceedings

of 16th annual meeting of Indian Nuclear Society (INSAC-05), Mumbai, Nov 15-18, 2005.

[2] Rajesh Kalmady, Vaibhav Kumar, Digamber Sonvane, Kislay Bhatt, B.S. Jagadeesh, R.S. Mundada,

A.G. Apte and P.S. Dhekne, ANUPAM – Ameya: A Teraflop Class Supercomputer, the
International joint Conferences on Computer, Information and System Sciences and Engineering

(CISSE) 2006, held in US.

[3] Y. Y. Azmy, Communication Strategies for Angular Domain Decomposition of Transport

Calculations on Message Passing Multiprocessors, Joint International Conference on

Mathematical Methods and Supercomputing for Nuclear Applications, Oct. 5-9, 1997, Saratoga

Springs, NY, Vol. 1, p. 404 (1997).

[4] R.S. Baker and K.R. Koch, An Sn algorithm for the massively parallel CM-200 computer, Nucl. Sci.

Engrg. 128 (1998), pp. 312–320.

[5] Mark M. Mathis, Nancy M. Amato, Marvin Adams, A General Performance Model for Parallel

Sweeps on Orthogonal Grids for Particle Transport Calculations, In Proc. ACM Int. Conf.

Supercomputing (ICS), pp. 255-263, Santa Fe, NM, May 2000.

1 50 100 150 200 250 300

0

20

40

60

80

100

120

S
p

e
e
d

-u
p

Number of processors

 MPI-Reduce (Method: Ortho, TSA)

 Bucket Algo (Method: Power, SI)

 Problem size 100x100x100

(a)

 (b)

Figure-1 Plots of Angular Parallelization data Figure-2 a) Diagonal Sweep

 b) Block-wise decomposition of grid

