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A Neutron Transport Code ATES3 (Anisotropic Transport Equation Solver in 3D), which was developed 
at BARC for the deterministic solution of 3D steady-state neutron transport problems, has been 

parallelized using Message Passing Parallel Programming model on BARC’s ANUPAM Parallel 

Supercomputer. The most time consuming step in the code ATES3, which is transport sweep, was made 

parallel using three different data-decomposition techniques, namely, parallelization in angular variable, 

parallelization using Diagonal Sweep approach and in the third approach, optimization techniques are 

being applied in Diagonal Sweeping. In the paper, we discuss the problem domain, parallelization 

techniques used and present the performance figures obtained with each approach. 
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1.Introduction 

The most  fundamental  task  in  the  design  and  analysis  of  a  nuclear  reactor  core  

is  to  find  out  the  neutron distribution  as  a  function  of  space,  direction,  energy  and  

possibly  time. The most accurate description of the average behavior of neutrons is given by 

the linear form of Boltzmann transport equation.  Due to massive number of unknowns, the 

solution of the transport equation imposes severe demands on computer processors / memory 

and requires best of numerical and computational schemes. 

The code ATES3
[1]

 (Anisotropic Transport Equation Solver in 3D) had been developed 

in BARC for the deterministic solution of 3-D steady-state neutron transport problems. The 

code makes use of advanced Krylov subspace based schemes for the solution. To use ATES3 

for practical reactor core simulations, it has been parallelized on BARC’s ANUPAM
[2]

 Parallel 

Supercomputer using Message Passing Parallel Programming model. 

The most time consuming step in the ATES3 code is transport sweep, which was 

targeted for the parallelization. We used three different data-decomposition techniques for 

parallelization. In first phase, the parallelization was done in angular variable, which yielded 

very good speed up. In second phase, Diagonal Sweep approach was followed, which couldn’t 

give very good efficiency figures due to idleness of the participating processors. In the third 

phase, we are trying to apply optimization techniques over Diagonal Sweep approach to 

improve the efficiency by doing proper load balancing among the participating processors. 

In the following sections, we discuss the compute-intensive part of the code, the 

parallelization techniques used for parallelization of the target portion and present the speed-up 

and efficiency figures obtained with each parallelization approach. 

 

2.Program description 
 

The general neutral particle transport equation has seven dimensions (3 in space, 2 in 

directions, 1 each in energy and time). The most commonly used method to discretise the 

angular variable Ω is the Discrete Ordinate (SN) method. Similarly other variables are also 

discretised by appropriate schemes. The discretised transport equation is conventionally solved 

by the well-known inner-outer iteration procedure. The code ATES3 was developed in-house 

for the deterministic solution of steady-state neutron transport problems in 3-D Cartesian 

geometry. One of the remarkable feature of the code is the use of Krylov subspace based 

schemes for the solution, in addition to the conventional methods. This has resulted in 

substantial CPU-time reductions and more accuracy. The code is written in Fortran-90/95 with 

modular format and is user/developer friendly. The most time consuming portion of the code is 

transport sweep, where iterations are performed one by one for each of the directions of neutron 

motion under consideration. The iterations for different directions are independent of each other 

and can be performed in parallel. Considering the inherent parallelism in the code, it was 

decided to do parallelization on transport sweep. Three different data-decomposition techniques 

were used for the parallelization, which are discussed in the following sections. 

 

3.Angular Parallelization 

 
The transport sweep part of the code takes 80% of the total execution time, where each 

of the N angular directions of neutron motion are iterated one by one for calculation of partial 

angular flux. Since, the calculations of angular fluxes in different directions are independent of 

each other, therefore, in first phase, the parallelization was done in angular variable, which 

yielded very good speed up with efficiency of 57% on 288 processors. In this technique of 

parallelization, the master process reads the input data, which specifies the problem 

configuration, and then constructs arrays representing the source, angular quadrature, material 
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composition and cross section data, and then broadcasts all necessary inputs to the slave 

processes. Then all the processes, master as well as slaves, proceed with mesh sweeps along the 

angles, statically assigned to them, and accumulate the contribution to the scalar flux in a local 

array. At the end of all mesh sweeps, all participating processes accumulate their local arrays 

into the new iterate array. The array accumulation is based on global reduce operations that are 

implemented in two ways, one using MPI’s native global reduce operation and the second one 

using Bucket Algorithm[3].  

MPI’s global reduce operation is based on a spanning tree topology among the 

participating processes. In this scheme, half the participating processes send their partial 

contributions to the other half, that performs the sum, then half the remaining processes send 

again, and so on. This is followed by a broadcast stage in which the new iterate is sent to all 

participating processes along the same spanning tree topology described above. The main  

advantage of  this  scheme is  that  it  reduces  the  number  of  messages  exchanged to  a 

minimum,  a crucial benefit on platforms  that possess  high communication  latency.  On the 

other hand, its disadvantages include a substantial idleness, as the number of active processes is 

cut by half in each step of each of the two stages, and the additional idleness results if the 

number of processes is not a power of 2. 

Bucket Algorithm performs the global reduce operation on a monodirectional ring 

topology.  In this scheme, each of  the participating  processes start by passing a bucket  

containing  the subvector of  its local  contribution  to  the scalar flux to its  neighbor  along the 

monodirectional ring.  Each  process then  sums  the  subvector it  just  received  into  the  

corresponding  local subvector which contains its own contribution,  then sends the bucket to its 

neighbor, and so on. By the time each bucket has circumnavigated the entire ring, each process 

will contain the completely updated iterate for its subvector.  In the broadcast stage, each 
process sends the new iterate subvector to its neighbor again along the monodirectional ring.  

The bucket algorithm typically  results in  a  larger  number  of  messages  than  the  spanning  

tree scheme, however, it produces  a smaller volume of data traffic  that is not concurrent, hence 

outperforming the MPI’s global  reduce on platforms with small  communication  latency.  The  

main  advantage of  the Bucket Algorithm  is  that  it  does not constrain the number of  

participating  processes to powers of 2, thereby all but eliminating  idleness  if  the number  of 
processes  divides the number of angles. Its disadvantages include a greater number of 

arithmetic operations, and of messages exchanged. In addition, it requires implementation by 

the programmer since it is not available in standard MPI libraries. 

The observed timings for transport sweep part of the code for test cases of Light Water 

Reactors, with above mentioned Angular Parallelization approaches, are presented in the 

following table. In the table, Ortho, TSA, Power and SI are abbreviations for different iterative 

methods, where Ortho stands for ORTHOMIN(1), TSA stands for Transport Synthetic 

Accelerations, Power stands for Power Iteration and SI stands for Source Iteration.  

 

Plots for two particular cases from the above table are drawn and presented in figure-1, which is 

placed on the last page of the paper. 
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4.Diagonal sweep 

 
In the second phase of parallelization, a different approach called Diagonal Sweep

[4]
 

was followed. In this technique, the iteration starts from the corner cell, as shown in figure-2(a), 

and in the successive iterations, the adjacent cells on the successive diagonal planes are solved. 

Every cell on the sweep or diagonal plane is independent of all other cells on the same plane, 

therefore, all the cells in a sweep plane can be processed in parallel. The sweeps for different 

directions are also independent and can be processed in parallel. The number of cells per 

diagonal plane follows the progression ‘1, 3, 6, 10, …’, which goes up to 3*N*N/4 and then 

decreases in reverse order. Here, N is the number of meshes in each of the three dimensions in 

the orthogonal grid. The maximum number of processors required in this scheme is 3*N*N/4, 
which is equal to the number of cells in the biggest diagonal plane in the grid.  

We tried diagonal sweeping in two ways. In the first case, an outer loop was 

implemented to iterate over the directions of neutron motion and an inner loop was 

implemented to iterate over the successive diagonal planes. Iteration from one diagonal plane to 

the successive one requires inter-process communication. In this method, as we increased the 

number of directions from 24 to 288, the inter-process communication also increased linearly 

and we could not get any speedup. Then we tried another way, where, in the outer loop we 

implemented iterations over the diagonal planes and in the inner loop, iterations were 

implemented over the directions. This way, the inter-process communication reduced 

drastically, as the intermediate flux calculations for all the directions in a cell were done in one 

go and stored in an array. This array was communicated to the cells in the successive plane 

during the next outer iteration. Thus, there was very minute effect of increase in number of 

directions on communication overheads. 

With the currently available computational resources in the organization, we could try a 

problem of size N=10, considering 288 directions of neutron motion, on 75 processors and 

achieved the speedup of around 5x over the sequential program. In this scheme, most of the 

participating processors remain idle for almost half of the time, so, we couldn’t get a good 

efficiency figure with this approach. There was a need of optimizations in this approach for 

proper load-balancing across the employed processors. We applied one optimization technique 

on Diagonal Sweep, which is briefed in the following section. 

 

5.Optimized Diagonal Sweep 

 
In the third phase, we applied an optimization technique on Diagonal Sweeping to 

utilize the participating processors efficiently. For this, the problem domain was decomposed 

block-wise among the processors using Volumetric decomposition
[5]

 technique, as seen in 

figure-2(b). In this scheme, all the cells in one cubical block are handled by one processor. On 

the boundaries, inter-process communication is required to move data from an `upstream' cell 

on one processor to an adjacent `downstream' cell on another processor, where which cells are 

upstream and downstream depends on the sweep direction.  

Since, we decomposed the grid in 8 blocks, we tried a problem of size N=180 and 288 

directions on 8 processors. Due to too much communication overheads and search operations 

involved in this technique, we could achieve speedup of 2x over the sequential run. Efforts are 

still going on to optimize the inter-process communication and other overheads. 

 

6.Conclusion and Future work 

In the paper, we presented parallelization techniques applied to transport sweep in the 

ATES3 code. Up till now, the parallelization techniques were tested for reactor simulations 

involving isotropic scattering. Subsequently, similar techniques will be tested for problems 

involving anisotropic scattering. The so-called whole-core simulations, which do not involve 
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approximations such as spatial homogenization of fuel assemblies, are extremely CPU-

intensive. It is planned to perform these calculations explicitly with large number of meshes, 

without the spatial homogenization, on a future larger ANUPAM parallel system at BARC. 
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(a)      
                                            

                                (b)  

Figure-1 Plots of Angular Parallelization data Figure-2 a) Diagonal Sweep 

                 b) Block-wise decomposition of grid 

 


