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Imbalanced data sets containing much more background thaal $nstances are very common
in particle physics, and will also be characteristic for thieeoming analyses of LHC data. Fol-
lowing up the work presented at ACAT 2008, we use the multartechnique presented there
(arule growing algorithm with the meta-methods baggingiasthnce weighting) on much more
imbalanced data sets, especially a selection of DO decapsuwtithe use of particle identifica-
tion. It turns out that the quality of the result strongly deds on the number of background
instances used for training. We discuss methods to exigitim order to improve the results
significantly, and how to handle and reduce the size of langjaihg sets without loss of result
quality in general. We will also comment on how to take intea@mt statistical fluctuation in
receiver operation characteristic curves (ROC) for comngarlassifier methods.
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1. Introduction

Multivariate analysis has successfully been employed inyniggh energy physics data anal-
yses, seee.g, [Aba08, Aub09b, Aub09a]. Of particular interest is the eoam case in which the
background dominates the signal. In intelligent data @siog, such problems where there are,
e.g, many more background than signal events, are referred'bmbalanced data problems "(see,
e.g, [Wei04]).

At ACAT 2008 we have presented a method for imbalanced pnobkonsisting of three com-
ponents for classifying imbalanced data sets [BGS08]. étlheen tested on A selection with
a background to signal ratio of less than 100. Here we tessahge method on B°-selection
without the usage of particle identification with Monte @adata produced for the LHCb exper-
iment [The08]. This data has a background to signal ratidbolua 3000 and is thus much more
imbalanced. It turns out that this extreme imbalance neeelsial care which we will describe here
in detail. The result of this selection has already beengmtesl at DIS 2009 [Bo09] and shown to
be superior to a cuts based analysis. Since the classifiqaizdthod has already been presented at
ACAT 2008, it will be summarized only briefly in the following

The first of the three components of our method is RIPPER [60hSK05, WFO05], a rule
based learner. Often a classifier gives a discriminant (lleeprobability for a candidate to be
signal) as an output. This is used by choosing a cut valueiswéhiable to adjust to the signal to
background ratio in the data set and to one’s needs. INdRB®ER, as it is used here, only gives
a binary outputj.e., classifying the candidate to be signal or background. Vdeausost based
method as the second component of our method. The way weiacgthe cost is by introducing
weights in thetraining step. This is called instance weighting and it follows that get a new
classifier model for each choice of cost [Tin02, WFO05]. Thesma is that in many cases the model
building uses the error rate to decide on the rules or treeches. But the error rate depends
on the signal to background ratio in the sample which is chdrdue to the weights. Instance
weighting provides more effective and simple models fossiiéers like decision trees or rule
based learners [Zha08]. Our third component is baggingt$bap aggregation) [Bre96] which is
used to stabilize the algorithm. It works like boosting, tithout the usage of weights and does
not lead to over fitting. For large training sets we introdaoe or two preselection steps to prevent
memory overflow and to reduce the training time.

For implementing the classification method we are using thiékmown data mining package
WEKA [WF05, WF]. WEKA is a free software written in java thahplements many ready to use
data mining algorithms like supervised and unsupervisasisdication. It can be used via a graph-
ical user interface or by the command line. Our sequenceastsref the following steps: bagging,
set the costs for instance weighting and applying the RIPEIESSifier. For each preselection an
extra full classification step is done including bagginge Tasts can be represented in a cost ma-
trix like those in Tables 1 and 2. Each entry in such a matrithés cost to be used in training
depending on whether the instance is a true signal or bagkdr¢row) and on the prediction of
the classifier (column). For preselections we put a high farsdbosing D° to keep almost all of
them while reducing the background significantly (see Tahldn the main classification step we
then use a high costfor wrongly accepted background as shown in Table 2. To prediae ROC
curve we scan the cost parameteso we have one classifier model per point in the ROC curve.
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predicted BG| predictedD® predicted BG| predictedD?
true BG 0 1 true BG 0 X
true D° 200 0 true D° 1 0

Table 1: A sample cost matrix for preselectionTable2: The cost matrix for the main selection.
The number 200 varies with the number of prese-
lections.

data set ca#BG | #sig. | # presel.
test 6.5-10° | 1827 -
training small 10,000 | 1851
training mid 60,000 | 1851
training larger | 240,000 | 1851
training largest| 1,000,000 1851

N P 2 O

Table 3: The D° training and testing data sets. The second column contagsumber of background
candidates, the third column contains the number of sigmadiclates and the last column gives the number
of preselections used.

2. DY-meson selection in LHCb Monte Carlo

LHCDb is one of the four large experiments at thp-collider LHC. It is built for precision
measurements @P violation and rare decays and is designed as a forward speeter.

To selectD%-mesons, we use the decBff — K. The data we are using is minimum bias
Monte Carlo, 36- 107 events produced in 2006 for the LHCb experiment at a centerast energy
of \/s= 14 TeV. Candidates are pairs of oppositely charged tracgsimpg through the full spec-
trometer, with the application of a very loose preselectiohon the distance of closest approach
(DoCA) of the two tracks oDoCA< 10 mm. We use 14 geometric, track quality and kinematic
variables. The training data sets contain the same numtségredl but increasing number of back-
ground candidate (see Table 3).

In Figure 1 the receiver operation characteristic (ROCyesirfor using the four different
training sets are shown (the plots are done using the tgsfl$at ROC curve is defined as a plot of
the true positive rate (or signal efficiency) versus thesfgssitive rate (or background efficiency).
We find that those classifier models corresponding to theitigisets with larger background give
superior results with respect to those where a training #étlawer background has been used.
This is especially evident in a zoom in Figure 2. Here, as atrsuoerywhere else, we see that for
a false positive rate of around 50~° the classifier model corresponding to the largest backgroun
in the training sample is the best. From Figure 3 we see tlatrélgion in false positive rate is
where the highest significantes. Thus this is an important working point.

Figures 4 and 5 compare the mass plots of a cuts Ha8eelection using the same variables,
and this multivariate method where the cost has been chosget the same signal yield as in the
cuts based scheme. This was done for comparison reasoneasab\hat for the same signal yield
the background is reduced drastically.

#signal

Isignificance is defined here T e



Classifying extremely imbalanced data sets Markward Britsch

0.55
05 R
0.45 i
—_—
0.4 % R
% o3sf 1
o e ]
2 o3} 1
.§ 2 T
£ 025f E
g o
= 0.2 |y R
ual
0.15 %’f% -
0.1 F ca 10,000 BG, no preselection ——+— |
ca 60,000 BG, one preselection
0.05 | ca 240,000 BG, one preselection :---*---
, ca 1,QO0,000 ﬁG,two‘presele‘ctions ;0

0 Il Il
0  0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018
False Positive Rate

Figure 1: ROC curve,i.e, true positive rate (signal efficiency) versus false pesitiate (background
efficiency), for using the different training samples. Mitha@t in this representation a curve being more to
the upper left is better.
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Figure2: As Figure 1, but zoomed in.

3. Forest cover type data

Is this behavior special to our data set or does it also appeather kinds of data? From a data
mining data set repository [Aha], we choose the data setatc&direst cover type (see also [BD99]).
It is about predicting forest cover type from cartographéciables. The observations (30 30
meter cells) are wilderness areas with minimal human-chdgsturbances as determined by the
US Forest Service (USFS) in the Roosevelt National Foresbdhern Colorado. The 54 variables
include 10 integer variables, like elevation in feet, slapdegrees and vertical distance to nearest
surface water. The rest of the variables are of categorie iggicating the wilderness and soil
type. The classes to predict are seven cover types, likec&fp, Lodgepole Pine or Ponderosa



Classifying extremely imbalanced data sets Markward Britsch

16 N = -
o
15 b ; .
a
14 + u P T
u} X ’
) 13 x u
g ¥
c *
I !
L 12 oy E
E= ;
p=y ;
TN 1
K
10 + S E
+ ca 10,000 BG, no preselection -
9 % ca 60,000 BG, one preselection b
ca 240,000 BG, one preselection ----x---
8 ca 1,000,000 BG, two presglections =

Il
0 5e-05 0.0001 0.00015 0.0002
False Positive Rate

Figure3: Significance versus false positive rate for Bfeselections using the different training samples.
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Figure4: TheD® mass plot after a cuts based §égure 5:  The mass plot after our multivariate

lection using the same variables. method, cost parameter set in a way to get the same
signal yield as the cuts based analysis for compari-
son reasons.

Pine. We use the 10 integer variables only and use class #o(@aiod/Willow) as “signal”, the
rest as “background” to get an imbalanced data set. Splittinthe data set into test and training
data, we have about 290,000 background instances and 1@& sistances in the test set. For
training about 240,000 background and 1382 signal instaace left. Again we use different
training sets with the same number of signal (1382) but a&iregg number of background, namely
10,000, 60,000, 240,000 and>5240,000, where in the last case we use a method to artificially
replicate the background instances as described below.tAésnumber of preselections increases
with the number of background instances in the training. & mo preselection in the case of
10,000 background instances, one preselection in the cd$%000 and 240,000 background
instances and two preselections for the larges trainingpkarin this larges training sample we use
additional artificial background data obtained by four snma@ndomization of existing background
instances using the SMOTE algorithm [CBHKO02]. This was dtmsee if we can improve the
result in spite of the fact that no more background events baen available.

In Figure 6 we present the corresponding ROC curves. Agaisesdhe same effect as for the
DO data. In addition we see that adding artificial backgrourtd diso improves the result.
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Figure6: The ROC curve for using the differentrigure 7:  The red ROC curve is plotted us-

training samples for the cover type data set. ing no baggingj.e., each point has been done
using the same training sample. For the green
curve, for each point the training set has been re-
sampledi.e., using one bagging iteration includ-
ing a change in the random seed for each point
in ROC space. The blue curve shows the effect
of many (10) bagging iterations.

4. How to compare ROC curves with scatter

We have a different classifier model for each point in ROC sp&ut these classifier models
depend not only on the training sample choice, but they apend on random choices in bagging
and in RIPPER during the training. Thus the pure ROC curvek fwmisy. So we need a way to
find the expectation curvé.€., average many) and a measure for the scatty érror bars).

In Figure 7, the red curve uses tbmme sample for training for all points, for the green curve
the training set has been re-sampled for each point. Thenlgisg curve (red) hides its scatter,
i.e., its dependence on the training set. The same is true fanamdROC curves using a cut on a
discriminant. The more noisy curve (green) tells us somgthbout this scatter. As it should be,
bagging reduces this scatter by using many bagging itexatioiue curve).

There are different methods for averaging ROC curves an@temgor bars discussed in lit-
erature (sees.g, [PFK98, PF01, DHO4, MP04, MPR05a, MPRO5b]). But none (txatould find)
takes into account the scatter due to the training set. Immmthod we start by doing each main
selection 10 times with different random seeds. Then we tiakenean false positive rate (FPR)
and true positive rate (TPR) as the point in ROC space. Thigridar to using 10 cross-validation
samples used in literature. But now we take the standardtiens as errors in FPR and TPF. The
result is what is shown in the plots in Figures 1, 2 and 6. Wé#te distribution like?

To find this out, we are using 300 samples of the same cost fheitadit random seeds — with
no averaging. This distribution in number of signal versumber of background candidates is
shown in Figure 8 including the projections onto the backgrband signal axis respectively. The
distributions are asymmetric and have tails, thus the stahdeviation cannot be associated with a
well defined confidence level. Nevertheless if we calculagea8 % confidence level intervals for
the background and the signal histograms in Figure 8, we2@et28] and [282, 351] respectively.
This, possibly by pure coincidence, is very close to what weasg the one standard deviation
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Figure8: Shown on the left is a scatter plot (hnumber of signal versusbrar of background) of 300 points
using the same cost but different random seeds. In the mitddleojection on the background axis is shown
and on the right the projection on the signal axis.

intervall from the mean and the RMBe., [22.7, 28.5] for background and [276, 356] for signal
respectively.

5. Conclusion and Outlook

For extremely imbalanced data sets we have seen that mdkgrband in the training set is
better for the LHCIDC selection as well as the forest cover type data set — in anriangiaregion
of false positive rate. One or two preselections with lesskfeound helps reducing the data to
handle large training sets. Even using extra artificial amknd instances helps.

For ROC curve errors, we have presented a method which seas@able and practical but
the error-bars cannot be interpreted as a confidence level.

More sophisticated ways to reduce the data size withoufrgodassification quality have
also been investigated by the authors [BGS]. Future workimdlude to search for better ways
to average ROC curves and to produce error bars. In additowant to try different classifiers
(e.g., decision trees) to see if the behavior is a generahndenot a special feature of the RIPPER
algorithm. Finally we want to try this method on rare decays.
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