
P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based
framework for HEP data analysis

D. Berge
European Laboratory for Particle Physics (CERN), Switzerland
E-mail: David.Berge@cern.ch

J. Haller
Universität Hamburg, Germany
E-mail: Johannes.Haller@physik.uni-hamburg.de

A. Krasznahorkay∗†

New York University, USA; on leave from the Institute of Nuclear Research of the Hungarian
Academy of Sciences (ATOMKI)
E-mail: Attila.Krasznahorkay@cern.ch

In a typical data analysis in high-energy-physics a large number of collision events are studied.
For each event the reconstruction software of the experiments stores a large number of measured
event properties in sometimes complex data objects and formats. Usually this huge amount of
initial data is reduced in several analysis steps, selecting a subset of interesting events and observ-
ables. In addition, the same selection is applied to simulated Monte-Carlo events and the final
results are compared to the data. A fast processing of the events is mandatory for an efficient
analysis.
In this paper we introduce the SFrame package, a ROOT-based analysis framework, that is widely
used in the context of ATLAS data analyses. It features (i) consecutive data reduction in multiple
user-defined analysis cycles performing a selection of interesting events and observables, making
it easy to calculate and store new derived event variables; (ii) a user-friendly combination of data
and MC events using weighting techniques; and in particular (iii) a high-speed processing of
the events. We study the timing performance of SFrame and find a highly superior performance
compared to other analysis frameworks.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research
February 22-27, 2010
Jaipur, India

∗Speaker.
†We thank S. Ask, N. Berger, T. Eifert, and A. Höcker, for their contributions to the SFrame development.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:David.Berge@cern.ch
mailto:Johannes.Haller@physik.uni-hamburg.de
mailto:Attila.Krasznahorkay@cern.ch

P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based framework for HEP data analysis A. Krasznahorkay

1. Introduction

The Large Hadron Collider (LHC) has started operation this year. The experiments are already
recording data close to their maximum bandwidth, which is around 300 MB/s in the case of the
ATLAS experiment. The data is reconstructed at the Tier-0 site at CERN, and then distributed
worldwide. The computing model of the experiments foresees that the reconstructed data files
should be analyzed using various GRID technologies.

While the grid job submission framework in ATLAS provides easy access to the computing re-
sources worldwide, the high latency (order of 1 day) of such an analysis makes it very inconvenient
when developing or tuning an analysis. This is generally solved by creating smaller datasets using
plain ROOT [1] TTree-s to store the event information in GRID jobs, downloading the datasets,
and analyzing them locally. In general even this slimmed version of the datasets can be too heavy
for running/developing the final analysis code. The SFrame model is to reduce the dataset size by
keeping only interesting events and variables in multiple steps, each time creating a smaller dataset.
This model scheme is sketched in Figure 1.

MC2 files
MC1 files

data files
ntuple files “offline” jobs

ROOT TTree
ROOT TTree

ROOT TTree

ROOT TTree
ROOT TTree

ROOT TTree

ROOT TTree
ROOT TTree

ROOT TTree

Histogram
Histogram

Histogram
Histogram

Histogram
Histogram

1st cycle:
dataset cleaning,
calculations

2nd cycle:
event selection,
calculations

Analysis framework,
handles:
 - I/O information
 - meta-data
 - luminosities
 - generator cuts

Figure 1: Analysis scheme for processing large sets of input data locally.

The SFrame package was designed based on a few general requirements. It had to be based
on ROOT, as the event data storage is relying on ROOT. Reading TTree-based ROOT files had to
be efficienct and fast. The code should provide simple interfaces for storing all kinds of TObject
based and even custom objects in the output ROOT files.

The final requirement was that it should be easily configurable. It has to be simple to run
the same analysis code on different datasets or configure the analysis differently under certain
conditions. We chose to base the job configurations on XML, an easily extendable language to
describe complex configurations, for which ROOT has built-in support.

2. Using SFrame / Quick Start

The SFrame code [2] is hosted on SourceForge [3], as it is not strictly tied to other parts of the

2

P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based framework for HEP data analysis A. Krasznahorkay

ATLAS code. Most of the code’s documentation can be found on the accompanying Wiki pages
[4].

To check out and compile the code, one has to do the following as an example:

cd analysis_directory/

svn co https://sframe.svn.sourceforge.net/svnroot/sframe/SFrame/trunk \

SFrame

cd SFrame/

source setup.[c]sh

make

This sets up the environment for running SFrame jobs, compiles the needed libraries, the main
executable, and an example library. To run the first example cycle on a machine that has access to
CERN’s AFS disks, one can run:

cd analysis_directory/SFrame/user/config/

sframe_main FirstCycle_config.xml 2>&1 | tee FirstCycle.log

The package also provides a number of scripts that make it easy to quickly create a new
analysis package, and add analysis cycle skeletons to it:

cd analysis_directory/

sframe_new_package.sh MyAnalysis

cd MyAnalysis/

sframe_create_cycle.py --name My::AnalysisCycle \

--linkdef include/MyAnalysis_LinkDef.h

This creates a directory alongside the SFrame directory, with the nominal SFrame package
structure, and places one skeleton cycle – that has some comments in it –, with the file names
AnalysisCycle.h and AnalysisCycle.cxx in the include/ and src/ directories. Af-
ter editing these files, the package can be compiled with a simple “make” command in the package’s
top directory.

3. Code structure

The SFrame code is divided into 3 parts, each one compiling a separate shared library.

• SFrame/core: This directory holds the source files for the shared library which has to be
used by all SFrame jobs, libSFrameCore.so.

• SFrame/plug-ins: This directory holds some helper classes that can be used in an analysis.
These classes are not used by SFrame itself, but they can provide convenient functionalities
in the users’ code. The library created is called libSFramePlugIns.so.

• SFrame/user: This directory holds some user code examples. The examples try to demon-
strate most functionalities of SFrame, including the the reading and writing of ROOT TTree-
s, creating histograms, configuring user properties from the configuration XML file, etc. The

3

P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based framework for HEP data analysis A. Krasznahorkay

directory also serves as a template for users creating their own SFrame analysis package.
The library created from the code is called libSFrameUser.so.

3.1 The SCycleBase class

The most important class of the core SFrame library is the one called SCycleBase. This is
the base class that all analysis cycles should inherit from. It provides convenient functionalities for
developing analysis code quickly. Since the base class provides a lot of different functionality, it
has been broken up into many components. The inheritance structure of the class can be seen in
Figure 2.

SCycleBase

ISCycleBase

SCycleBaseExec

TSelector ISCycleBaseConfig

SCycleBaseConfigSCycleBaseNTuple

ISCycleBaseHist

SCycleBaseHist

ISCycleBaseNTuple SCycleBaseBase

Figure 2: Inheritance structure of the SCycleBase class. The classes that have names beginning with “I” are
“interface classes”.

The detailed description of all these classes can be found under [5]. With this modular design
it is quite easy to extend/change the functionality provided by the package. The core SFrame code
only assumes that all cycle classes implement the ISCycleBase interface. So it is possible to
create cycle classes that don’t inherit from SCycleBase, but some other base class that also
implements this ISCycleBase interface. A good example for this functionality is explained in
Section 4.

3.2 The configuration file structure

The user analysis jobs are configured using XML files in SFrame. The user example package
of the code holds two example configurations for running the two cycles implemented in the pack-
age. The XML files themselves hold a large amount of documentation on the structure of the files,
and the online documentation also has a long section on the format of the XML files [4]. We only
list the most important aspects of the configuration files here.

• <Library .../> and <Package .../> definitions: The user has to declare all the
shared libraries and all the PAR packages [6] that are needed to run the analysis cycle(s).

• The <Cycle ...> definition: The user can declare a cycle by adding a piece of code like
this:

<Cycle Name="My::AnalysisCycle" OutputDirectory="./results/"

PostFix="_test" TargetLumi="123.4" RunMode="PROOF"

4

P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based framework for HEP data analysis A. Krasznahorkay

ProofServer="lite" ProofWorkDir="" ProofNodes="4" >

...

</Cycle>

This instructs the code to create a cycle object from the class called “My::AnalysisCycle”,
and execute it in 4 parallel processes on the local machine using PROOF-Lite.

• The <InputData ...> definition: SFrame uses the concept of InputData blocks to de-
scribe the input files of the analysis cycles. Each InputData block collects the files describing
a homogeneous set of events. For example one would put a given type of Monte Carlo files,
or data files recorded with the same conditions, in one InputData block. SFrame produces
one output file per InputData, which collects the statistics of all the events belonging to that
InputData.

4. SFrameARA

One commonly used extension of SFrame is called SFrameARA. ARA stands for Athena [7]
ROOT Access, and refers to a set of ATLAS offline software libraries, which make it possible to
read regular ATLAS reconstructed events in ROOT.

As discussed before, the SCycleBase class was created in a modular way to make it pos-
sible to easily add to or modify the functionality of the base class. The SFrameARA code takes
advantage of this functionality. It modifies the behavior of some of the functions of the constituent
classes of SCycleBase, to make it possible to read in so called ATLAS POOL files within a
regular SFrame job.

This modular design allowed other kind of extensions in the past as well, for instance one
group could extend the code to make it possible to read HepMC event files as inputs to SFrame
jobs.

5. Performance

One of the main reasons for using SFrame is its performance. It can provide processing
speeds very close to purpose-written code, while simplifying many aspects of writing the code.
In the following we present a simple comparison between a number of different architectures in a
computing-heavy job.

For the exercise we generated a set of 10 million events using the ATLAS offline software.
Each event held a variable number of particles, with random kinematic distributions following
some simple requirements. The results were saved into a set of ATLAS POOL files. Then, still
using the ATLAS offline software, we translated these events into simple ROOT files, which didn’t
need any external ROOT dictionaries to read. We used the POOL and “flat” ntuple files as inputs
to the performance comparison jobs.

Then we implemented the same, simple analysis code in all the architectures detailed below:
we create all the possible 2, 3, 4 and 5 particle combinations from the generated particles, calculate
a set of variables from the combinations, and fill about 20 histograms with the results.

5

P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based framework for HEP data analysis A. Krasznahorkay

The measurements were run on 2 PCs running Scientific Linux 5 64-bit, each having a quad-
core AMD PhenomTM 9600B CPU, and 4 and 8 GBs of RAM, respectively. The generated input
files were served from a 4 TB LaCie 4big QuadraTM disk connected to one of the PCs. The tests
used ROOT v5.22/00d, Python 2.5, and ATLAS offline software 15.6.4. Each measurement was
run 5 times, to try to lessen fluctuations in the results. The “Athena” and “SFrameARA” jobs were
using the generated POOL files as inputs, while all the other jobs used the ntuples.

Architecture Input location
Local XRootD

Athena 1.77±0.02 kHz N/A
ACLiC 3.85±0.03 kHz 3.77±0.04 kHz
CINT 259.0±2.2 Hz N/A

PyROOT 127.2±2.2 Hz 123.1±1.6 Hz
LOCAL 4.04±0.02 kHz 4.02±0.03 kHz

SFrame PROOF-Lite 15.92±0.15 kHz 15.81±0.13 kHz
PROOF N/A 29.53±0.17 kHz

SFrameARA
LOCAL 3.26±0.02 kHz 3.26±0.02 kHz

PROOF-Lite 13.03±0.16 kHz 12.88±0.18 kHz

Table 1: Performances of different software architectures, running the same analysis job. The meaning of
the architectures is as follows; Athena: AthAlgorithm running in a small ATLAS offline job; ACLiC: The
analysis code put into a class created by TTree::MakeClass(...), compiled and run from ROOT; CINT: A
macro executed in ROOT in interactive mode; PyROOT: A Python analysis script using the ROOT bindings;
LOCAL: SFrame running on 1 processor core; PROOF-Lite: SFrame running on 4 processor cores; PROOF:
SFrame running on all 8 processor cores.

The results of this simple performance comparison can be seen in Table 1. A few comments
have to be added to the results. The ATLAS offline software (Athena) was performing very nicely
on the small generated events. Realistic analyses can usually run with about 100 Hz on recon-
structed events. ROOT’s compiled mode (ACLiC) is only slightly slower than the SFrame code
running on one processor core (SFrame LOCAL), the only difference is that SFrame uses slightly
quicker histograms than ROOT’s own classes. As I/O was not a limiting factor in the tests, both
the SFrame and SFrameARA jobs scaled very well with the number of processor cores. Finally, it
seems very obvious that interpreted code (CINT, PyROOT) can not be used efficiently to perform
high-performance analyses on LHC data.

6. Summary

The SFrame code provides a large set of convenience features for developing high performance
HEP analysis code very quickly. Thanks to its flexible design, it can also be easily extended using
additional libraries to support the needs of some special groups.

The code – despite the convenience features – performs almost as well as analysis code can
perform, written from scratch. The development of the code is ongoing, we expect to add more
features/optimizations as we develop more and more complex analyses using SFrame on LHC data.

6

P
o
S
(
A
C
A
T
2
0
1
0
)
0
4
8

SFrame - A high-performance ROOT-based framework for HEP data analysis A. Krasznahorkay

References

[1] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework”, Nucl. Instrum.
Meth. A 389 (1997) 81.

[2] Links: http://sframe.sourceforge.net/,
http://sourceforge.net/projects/sframe/

[3] Link: http://sourceforge.net/

[4] Link: http://sourceforge.net/apps/mediawiki/sframe/

[5] Link: http://sframe.sourceforge.net/Doxygen/

[6] Link: http://root.cern.ch/drupal/content/working-packages-par-files

[7] ATLAS Collaboration, “ATLAS Computing: Technical Design Report”, ATLAS-TDR-017,
CERN-LHCC-2005-022

7

http://sframe.sourceforge.net/
http://sourceforge.net/projects/sframe/
http://sourceforge.net/
http://sourceforge.net/apps/mediawiki/sframe/
http://sframe.sourceforge.net/Doxygen/
http://root.cern.ch/drupal/content/working-packages-par-files

