
P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High
Energy and Astroparticle Physics

M.Brodski, M.Erdmann, R.Fischer, A.Hinzmann∗, T.Klimkovich, D.Klingebiel,
M.Komm, G.Müller, T.Münzer, J.Steggemann, T.Winchen
RWTH Aachen University, Physikalisches Institut 3A, 52062 Aachen, Germany
erdmann@physik.rwth-aachen.de

VISPA (Visual Physics Analysis) is a development environment to support physicists in prototyp-
ing, execution, and verification of data analysis of any complexity. The key idea of VISPA is to
develop physics analyses using a combination of graphical and textual programming. In VISPA, a
multipurpose window provides visual tools to design and execute modular analyses, create anal-
ysis templates, and browse physics event data at different steps of an analysis. VISPA aims at
supporting both experiment independent and experiment specific analysis steps. It is therefore
designed as a portable analysis framework for Linux, Windows and MacOS, with its own data
format including physics objects and containers, thus allowing convenient transport of analyses
between different computers. All components of VISPA are designed for straightforward integra-
tion with experiment specific software to enable physics analysis with the same graphical tools.
VISPA has proven to be an easy-to-use and flexible development environment in high energy
physics as well as in astroparticle physics analyses.

13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research,
ACAT2010
February 22-27, 2010
Jaipur, India

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High Energy and Astroparticle Physics A.Hinzmann

1. Introduction

Nowadays graphical tools are commonly used to support physics analyses. Among the most
widely used tools are integrated development environments such as Eclipse [1] for code develop-
ment as well as data browsing tools such as the ROOT-TBrowser [2] and event displays in high
energy physics. The concept of the Visual Physics Analysis (VISPA) project [3] is to incorporate
graphical tools for analysis development including data browsing in an integrated development
environment for physics analysis. The goal of VISPA is to allow physicists to spend more time on
solving physics problems than on technical implementations. Therefore VISPA enables develop-
ment of an entire analysis in a single integrated development environment. In the startup screen of
VISPA, shown in Figure 1, a typical analysis cycle is depicted, consisting of prototyping, execution
and verification. VISPA supplies graphical tools for each of these steps.

(a)

Figure 1: Startup screen of VISPA.

The fields of application for VISPA are in high energy physics and astroparticle physics and
may extend in the future. As an example, VISPA has been used for the development of a method for
measuring cosmic magnetic fields with ultra high energy cosmic ray data [4]. This analysis consists
of a linear chain of Python [5] and C++ modules which process the cosmic rays originating from
randomly generated universes. Another example is a development of an electroweak top quark
analysis within the CMS experiment where simulated collision events pass through a logical tree of
modules. This analysis makes use of the auto-reconstruction process [6] module that automatically
reconstructs multiple versions of decay trees using a steering template of the parton process on
input.

2



P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High Energy and Astroparticle Physics A.Hinzmann

A key feature of VISPA is that it is designed for any level of complexity and user experience.
It enables highly flexible analysis concepts according to the needs of the individual analyses. The
data format allows any data to be stored and user extensions to be included. Simultaneously a mini-
mal learning time and the possibility to design basic analysis with little knowledge of programming
supports student-level analyses. The visualization of modular analysis steps encourages develop-
ment of well structured analyses. VISPA has been used in hands-on exercises of the Elementary
Particle Physics lecture series (4th year) at the RWTH Aachen University (2009).

The two main components of VISPA are the analysis toolkit PXL (Physics eXtension Li-
brary) and the graphical user interface of VISPA. In the following two sections, first the analysis
toolkit and secondly the graphical user interface will be explained in detail.

2. The Physics eXtension Library (PXL)

The Physics eXtension Library (PXL) [7] is the underlying analysis software for VISPA. It
is a C++ toolkit offering a collection of tools to support experiment independent physics analysis.
PXL has been continuously developed since 2006 as the successor of the PAX toolkit [8]. The
main components of PXL will be discussed in the following. Each component is accessible within
VISPA, but can be used separately as well.

PXL provides a set of interfaces for physics analysis in high energy and astroparticle physics.
They include physics objects (e.g. pxl::Particle), containers (e.g. pxl::Event), object relations (e.g. the
pxl::Relations of pxl::Particles) and an interface allowing for the addition of user specific data
to any of these objects (e.g. pxl::UserRecords). Instances of these objects can be organized in
the following sense. A pxl::Event can hold several pxl::EventViews which themselves contain
pxl::Particles and their relations to construct, e.g., Feynman diagrams, or particle decay trees. Dif-
ferent pxl::EventView’s are useful, e.g., for comparisons of generated particles and objects recon-
structed in a detector. Figure 2 shows an example of a representation of a high energy physics event
in PXL.

(a)

Figure 2: Example for an event containing two views of the event filled with particles and their relations.

All classes of PXL are available in the Python language as well. This feature is essential for the
implementation of analysis modules in the Python programming language. The PyPXL interface

3



P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High Energy and Astroparticle Physics A.Hinzmann

is wrapped around the C++ classes using the SWIG [9] tool.
PXL has its own fast, compressed and flexible I/O format. All objects in PXL are derived

from the pxl::Serializable which defines serialization (deserialization) to (from) disk. It is designed
for simple splitting and merging of data at the file level and allows exchange of data between all
common platforms (Linux, Windows and MacOS).

PXL provides a framework for modular physics analyses in which each module can have
multiple sinks and sources to control the data flow. Figure 3 shows an example of a simple anal-
ysis in PXL. The data flow is from left to right, starting from an input or generator module, and
visualized by connection lines. For data exchange between the modules, a common interface is
defined. In this example from high energy physics the interface is the pxl::Event, but in principle
any pxl::Serializable can be exchanged. PXL analyses can be saved and loaded in XML format.
They can be executed both on a batch system using the executable pxlrun as well as interactively
using the graphical user interface of VISPA.

(a)

Figure 3: Analysis which filters events from data and Monte Carlo (MC) input using the same selection
module and writes them out to two files.

PXL delivers a variety of module interfaces and examples. From these interfaces users derive
their analysis specific modules. Is it possible to use both C++ and Python modules in the same
analysis. C++ modules are used for performance-sensitive analysis tasks, while Python modules are
used for fast prototyping and analysis logic. Figure 4 summarizes the standard modules available
in PXL. They include a set of examples which explain the access to common tools (e.g. plotting
histograms using PyROOT [2]).

3. Visual development of physics analyses

VISPA supplies a graphical user interface for visual development of analyses, the Analysis
Designer, shown in Figure 5. The Analysis Designer allows the design of new analyses by con-
necting and configuring a chosen set of modules. Analyses can be saved as XML files and opened
again for editing. The main functionalities of the Analysis Designer are described in the following.
It lists the available C++ and Python modules which can be inserted into an analysis using drag and
drop. Connection lines between modules can also be drawn using drag and drop. The parameters
of the modules can be modified using the properties grid on the right side of the window. A double
click on a module opens its script for editing. A double click on input and output modules opens the
data browser for inspection of the corresponding file. On execution of the analysis in the Analysis
Designer the output is shown in an extra section at the bottom of the window.

4



P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High Energy and Astroparticle Physics A.Hinzmann

(a) (b)

(c)

Figure 4: (a) Standard C++ modules, (b) Standard Python modules, and (c) Example modules.

(a)

Figure 5: Screen shot of the Analysis Designer.

The data browser of VISPA, shown in Figure 6, gives a visual representation of all data
contained in a PXL data file. It draws decay trees according to the relations of the displayed objects.
All properties including user defined data of any object can be inspected using the properties grid
on the right side of the window. As opposed to typical event displays in high energy physics, this
browser is able to show every single object and parameter in the file including user defined data on

5



P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High Energy and Astroparticle Physics A.Hinzmann

an event by event basis. Further, the data browser also serves as an editor for event templates, that
can be used, for example, to create steering files for the auto-reconstruction process module.

(a)

Figure 6: Screen shot of the PXL Data Browser

In order to allow physics analysis using a single integrated development environment both ex-
periment independent and experiment specific analysis steps are supported by VISPA. For this
purpose the graphical user interface codebase has undergone a major redesign recently. The graphi-
cal platform is now based on a plugin mechanism and a large collection of graphical components to
allow straightforward implementation and integration with experiment specific software. An exam-
ple for a successful integration with experiment specific software is the Configuration Editor [10]
which is a tool to edit the job configuration files used in the CMS experiment for simulation and
reconstruction.

In physics analyses it is essential to be able to easily share work. An important feature of
VISPA is portability of analyses. The well defined interface for modules allows the sharing and
reuse of common modules within a working group. VISPA further allows the exchange of complete
analyses by an automated tar-ball creation integrated in the graphical user interface. The exchange
between different platforms is also possible since the graphical user interface is based on the plat-
form independent application framework PyQt4 [11, 12]. VISPA is available on Linux, Windows
and MacOS.

In 2009 VISPA has undergone a review on software quality and performance in collabora-
tion with the Institute for Software Engineering, RWTH Aachen University. Measures such as the

6



P
o
S
(
A
C
A
T
2
0
1
0
)
0
6
4

Visual Physics Analysis - Applications in High Energy and Astroparticle Physics A.Hinzmann

McCabe metric for function complexity have shown good maintainability for PXL. The study has
also triggered several performance improvements, in particular in the field of the I/O compression.

A new idea to perform VISPA analyses using a web browser has been recently proposed and
implemented as a proof of principle. VISPA@Web shall allow server-based analyses using a
graphical user interface implemented as a web page. The advantage of this concept is that no local
user installation is needed and, therefore, it can be easily used in teaching applications, for example.

4. Summary

VISPA is a graphical development environment for physics analyses with applications in high
energy and astroparticle physics. Its availability on all common platforms (Linux, Windows and
MacOS) and its support for both Python and C++ modules makes it a powerful tool for collaborative
work on physics analysis at any degree of complexity.

References

[1] Eclipse, http://www.eclipse.org/.

[2] R. Brun, F. Rademakers ROOT - An Object Oriented Data Analysis Framework, Proc. AIHENP96
Workshop, Lausanne (1996), Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81, http://root.cern.ch/.

[3] O.Actis et al. Visual Physics Analysis (VISPA) - Concepts and First Applications, Proc. 34th Int. Conf.
High Energy Physics (ICHEP 2008), Philadelphia, Pennsylvania [arXiv:0810.3609],
http://vispa.sourceforge.net.

[4] M. Erdmann, P. Schiffer Measuring Cosmic Magnetic Fields with Ultra High Energy Cosmic Ray
Data, Astropart. Phys. 33 (2010) 201 [arXiv:0904.4888].

[5] Python Programming Language, http://www.python.org.

[6] O. Actis et al. Automated Reconstruction of Particle Cascades in High Energy Physics Experiments
(2009) [arXiv:0801.1302].

[7] Physics eXtension Library (PXL), http://pxl.sourceforge.net.

[8] S. Kappler et al. The PAX Toolkit and its Applications at Tevatron and LHC, IEEE Trans. Nucl. Sci. 53
(2006) 506 [arXiv:physics/0512232].

[9] Simplified Wrapper and Interface Generator (SWIG), http://www.swig.org.

[10] M Erdmann et al. Visualization of the CMS Python Configuration System, J. Phys.: Conf. Ser. 219
(2010) 042008, http://twiki.cern.ch/twiki/bin/view/CMS/SWGuideConfigEditor.

[11] Qt - A cross-platform application and UI framework, http://www.qtsoftware.com.

[12] PyQt, http://www.riverbankcomputing.co.uk.

7


