PROCEEDINGS

OF SCIENCE

Parallelization of events generation for data analysis
techniques

Alfio Lazzaro *
CERN openlab, Geneve
E-mail: pl fi 0.l azzaro@ern. ch

With the startup of the LHC experiments at CERN, the involgechmunity is now focusing on
the analysis of the collected data. The complexity of tha daglyses will be a key factor for find-
ing eventual new phenomena. For such a reason many dataiartalyls have been developed in
the last several years, which implement several data asadchniques. Goal of these techniques
is the possibility of discriminating events of interest andasuring parameters on a given input
sample of events, which are themselves defined by seveiabies. Also particularly important
is the possibility of repeating the determination of thegpageters by applying the procedure on
several simulated samples, which are generated using Mante techniques and the knowledge
of the probability density functions of the input variableghis procedure achieves a better es-
timation of the results. Depending on the number of vargbt®mplexity of their probability
density functions, number of events, and number of samplenerate, the whole procedure can
be high CPU-time consuming. In this paper we show how the Bl@drlo generation of the
events for each simulated sample can be parallelized ugsenkdP to scale over multi-cores in
a single computational node.

13th International Workshop on Advanced Computing and ysisiTechniques in Physics Research
February 22-27, 2010
Jaipur, India

*Speaker.

(© Copyright owned by the author(s) under the terms of the Cre&@tdmmons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:alfio.lazzaro@cern.ch

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

1. Introduction

In the last years many complex techniques have been used in the HiglyBisrgjcs (HEP)
community, such as maximum likelihood, neural networks, and boosted detrisdzs[[lll]Z]. These
techniques are used to analyze the huge amount of data collected by énamexys. Data are a
collection of independergvents an event being the measurement of a setasfables(energies,
masses, spatial and angular variables...) recorded in a brief span of tithe plysics detectors.
The events can be classified in differesptecies which are generally denoted witlignals for
the events of interest for physics phenomena, lagckgroundsfor the rest. The discrimination
between the different species is obtained using particular variatisiminating variable} or
more in general combination of these variables, which have differenacteaistics for signal and
background events. These techniques have several advantagesspitist to the simpleut and
countanalysis method as better discrimination between signals and backgrounds, the possibility
to take in account errors with a better precision and correlations betweadtisttriminating vari-
ables used in the analysis. However, they require long CPU-time execWioimportant role
in the determination of the results is played by the possibility of repeating theatiead of the
parameters on several distinct simulated samples of data, doing the sopsaietb-experiments
The samples are generated using Monte Carlo techniques and the knewsfetige probability
density functions (PDFs) of the input variabl€s [4]. This proceduhéeses a better estimation of
the results. Also in this case it can require long CPU-time execution, degeonin

e number of events and variables to generate;
e number of data samples to generate (usually on the order of thousands);

e complexity of the models.

Pseudo-experiments are used in statistical techniques based on figtguésrence, such as the
determinations of confidence intervals and significance tests of the parambighis case the
number of pseudo-experiments can be greatly highgttistical significance test requires more
than one million of pseudo-experiments for an accurate estimation). Assunsngvehcan con-
clude that it is particularly important to speed-up the generation of the simukatgules. An easy
solution is to parallelize the events generations, taking benefit from the nétiwcaone CPUs. In
the last years, vendors like Intel and AMD have not incremented therpesihce of single com-
putational unit as in the past, but they are working on multi-core CPU. Gilyrere have up to
12 cores implemented on one single chip. This fact represents a possitil¢tion in the devel-
opment of new programs. Indeed we can parallelize the code using edsi@mory paradigm
obtaining great benefits from new multi-core architectures. So we haedadionulate some algo-
rithms generally used for HEP data analyses. These techniques of HiginFence Computing
are well established in other fields, like computational chemistry and assigghyn HEP com-
munity there is not such a large use, but in the future it can be an eledatibisdon all the cases
where the data analyses will get more and more complicated.

An implementation for the parallelization of the maximum likelihood procedure igitbestin
the Ref. [B]. In the work described in this paper we focus on the paraltediz of events generation

1Set of independent cuts on the input variables.

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

for pseudo-experiments. The parallelization is based on OpenMP,dhetefing a shared memory
paradigm. We will describe the implementation and we will show the results oftsligidor an
application used as benchmark.

2. Parallelization of Monte Carlo events gener ation

The Monte Carlo method is a numerical technique for calculating probabilitiéselated
quantities by using sequences of random numiérs [1]. The key factioe igeneration of ran-
dom numbers, or more properpseudo-randommumbers, using specific algorithms which are
implemented in pseudo-random number generators (PRNIGs) [4]. Tkeseagors produce long
sequences of apparently random residtsee@ms, which are in fact completely determined by a
initial value, known aseed Another important characteristic of the PRNGs is their periodicity:
the maximum length of the sequence before they begin to repeat, so brekemttomness of the
sequences. Generally PRNGs have long period (usudl'®), which allows the possibility to use
them in most Monte Carlo applications without particular worries.

It is possible to generate numbers which follow simple PDFs, such as Gaasslauniform
distributions. There are a couple of methods to generate numbers fropeaesic PDF[4]. These
methods involve transforming an uniform random number in some way. Theused in HEP is
theaccept-rejectnethod. Given a generic PDF, it involves several steps:

1. extraction of a random numbemith a uniform distribution (od random numbers in case
of a PDF ofd dimension) in the variable range of validity;

2. extraction of another random numlyawith uniform distribution in the range between 0 and
the maximum value of;

3. testing whethef (x) is greater than thg value. If it is, thex value is accepted. Otherwise,
thex value is rejected and the algorithm tries again.

Clearly the number of extractions from the uniform distribution needed tergéma valid random
number fromf is not predictable a priori. Highly-non-uniform multidimensional distributioas c
require several random number extraction before accepting a vakteatl, the minimum number
of extractions is given by the dimension of the PDFs plus the extractign of

The usual adopted procedure in HEP for the generation of diffeeanples for the pseudo-
experiments is based on extracting different streams from the same PRiIGseeam with a
different seed for each pseudo-experiment. The values of the seedsved for allowing the
regeneration of the same events of a specific pseudo-experiment, riddeglg from the other
pseudo-experiments. Note that we are extracting different streams a#gictot guaranteed to be
independent. The hope is that they will be non-overlapping and unatadestreams of the original
PRNG. This is generally valid when there is a proper determination of thevsdael in case of
PRNG with large periodicity{]5]. This hope, however, has no theoret@maidation. Consequence
of that is the impossibility to be sure whether a PRNG is affected by correldf§nd his pro-
cedure of events generation allows the possibility for parallelizing on thedpsexperiments as
entire entities, dividing them in different processes. The clear limitation is\wewant to have a
finer parallelization for the generations inside each pseudo-experin@rgu€h a case we require

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

appropriate parallel pseudo-random generafgrs [7]. Theseajereprovide methods for extract-
ing sub-streamgrom a main stream (with an unique seed). Therefore the differenssabms
can be used for the parallel generation inside each pseudo-experifF@nthe implementation
described in this paper we use a PRNG provided by Tina's Random NuBdegrator library
(TRNG) [B]. TRNG is a state-of-the-art C++ pseudo-random numbeegator library for sequen-
tial and parallel Monte Carlo simulations. It provides optimized PRNGs and miettoo usage
in parallel applications. We choose tjgar n5 PRNG which has a period of abouts x 106,
This PRNG implements a method folock splitting Let m; be the maximum number of calls to a
PRNG by each processpband letp be the number of processes(1, ..., p), we can split the main
stream of random number so that each proceg#l get a sub-stream witlm, random numbers.
This method works only if we know, in advance or can at least safely estimate his value. To apply
block splitting it is necessary to jump from théh random number to th@+ Zij;ll m;)th number
for the process$ without calculating all the numbers in between. A methadp is provided in
theyar n5 PRNG for doing that.

2.1 Implementation of the algorithm

In this section we describe the implementation of the algorithm for events dgiemdracase of
pseudo-experiments. The implementation is based opah@5 PRNG, using th¢ unp method,
coded in C++ language and OpenMP.

At this point a crucial consideration must be made: the generated samplaobdsipend on
the number of processes. This applies either for the values and theobttiergenerated events.

It is mandatory for debugging, especially in parallel environments wheretimber of parallel
processes varies from run to run, but also guarantees that the gda@iBRNG with respect to an
application does not depend on the degree of parallelization.

Let’s consider the simple case of a generation of a single variable with arndfistribution.

In this case we do not need the accept-reject method, but we can dingctgtdrom the corre-
sponding distribution. Assuming that we want generate a sampleNngtrents and we havepro-
cesses, we can easily calculate the number of evetdgyenerate by each process= (N DIV p)

plus 1 ifi < (N % p) 2. In this case we have = n; (i. e., one to one correspondence between calls
to the PRNG and events), so that the parallelization of the generation is Hwaigrd: the pro-
cessi does the generation of events, which are stored in a local (to the process) data structure
(such as a C+st d: : vect or); then, at the end of the parallel generation, each process copies
his local generated data in the final global data structure. This algorittisfiesithe condition of
independence from the number of processes and it can be easily impldrasimg OpenMP.

Now we consider the case of generation of variables using acceptmgérod from a single
complex PDF ofd dimension. As we said above, in this case we cannot predict a priori the va
of m. However, we can calculate the lower limit on this valog:> (d + 1) x n;. If we consider
(d+1) x n; as the maximum number of random numbers available for the procegsend up
with g; events generated by each process and stored in the local data stuldtweeconsider that
all events are accepted at the first extraction of the correspondidgmanumbers, theg; = n;.
Since this is normally not valid, we can conclude thak n;. Giving the characteristic of the

2DIV is the integer division and % is the module of the integer division as in the @finition.

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

j unmp method to split the main stream in continuous sub-streams for each proedsayathat the
(gi + 1)th event will be generated by procéss1 (and so on for the remaining events). This means
that consideringn = (d+1) x nj, we will generate the firsg? ; gi events of the global final sample
(copying together all local data structures in the global data structulewiog the order rank
of the processes). Then we can iterate the procedure of parallelagieneconsidering now the
remainingN — zipzlgi events for the generation. This requires corresponding jumps in the PRNG
for each process, which introduces some overheads in the paralleligdocomplexity of jump
grows logarithmically in its argument). Other overheads are introduced thatindling of the data
containers. To reduce these effects, the parallel generation is stafneecthe remaining number
of events to generate is less that 1% of total request events, with the regneweints generated by
only one process up to the completion of the global sample. Also this pracgdarantees that
this sample will be the same independently by the number of parallel processes

The last case we consider is the generation of events with variables fifenext PDFs, which
is the usual case in the pseudo-experiments. The solution adopted in ¢his tesgeneration from
each single PDF, one at a time, which basically leads to the above discasssd This is the only
procedure we found for guaranteeing that the generated samples tilepend by the number
of parallel processes. The side effect is an further overhead wigeging all the values of the
variables in the final dataset.

3. Benchmark example

As tests of the implemented parallel algorithm, we want to generate a data saompléhé
following PDFs (in parenthesis we report theimension of the PDFs):

e uniform (d = 1);
e truncated normal distributiofd = 1);
e 2" order polynomiald = 1);

e neutrino oscillation distributior{J9]:

P(Vy — Ve) = Sir?(20) sir? , (3.1)

1.27AmPL
(FE7)
whereP is the probability for a/;, to transform into ave , L is the distance in km between the
creation of the neutrino from meson decay and its interaction in the detEdsaihe neutrino
energy in GeV, andn? and@ are two parameters which characterize the oscillation. In this
formula the two variables to generate arandE (d = 2).

So in total our sample is composed by 5 variables. Note that for the last twe PBeneration
is done using the accept-reject method. Plots of the PDFs used in our tdsts axample of
corresponding generated data distributions are shown in fifures[l.and 2

We ran the tests on an Intel Westmere-EP server which is available as tdsinenat
CERN/Openlab. It is a dual-socket machine, where each CPU is an leshWre-EP X5670,
with 6 cores (2 hardware threads per core) running at 2.93 GHz (stalaofol2 cores and 24

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

[Truncated normal distribution 2" order polynomial

~800 —~

< <

=] 26

S o

300 S40l

a 240§

I S H

g 3208

%400 @200

0 1 1 1 1 1 1 1

2 -15 -1 05 0 0.5 1 15
uniform

. 1 15
gaussian polynomial

Figure 1. Plots of the unidimensional PDFs used in the benchmark bdsé (ine). Points with errors

are an example of generated data distributions (10,000®veNote that the curves are just rescaled and
superimposed to the points.

[Neutrino Oscillation Model |

Neutrino Oscillation Data

Events /(5 GeV x 0.04 km))

55 60
e

7045
35
Ene(g‘l

480 ~

© 840
Q60 <

J 8
o
240 d20
s =

5 Zoo
: S0}

w
100,

QO 15 20 25 30 35 40 45 50 55 60 8A6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Energy (GeV) Distance (km)

Figure 2. Plot of the neutrino oscillation model used in the benchntask (top left plot). An example of
generated data distribution (10,000 events) is shown i2ihkistogram (top right plot). In the two bottom

plots we show the projections on the two corresponding gdeervariables. Note that the curves are just
rescaled and superimposed to the points.

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

hardware threads). The Turbo Mode of the CPU is switched off. Thegsses were pinned to the
cores running them. The system allows hardware threading and it wisluseg the tests. Thus,
if there were no more physical cores available, the jobs would be pinneatdavare threads, still
maximizing the amount of physical cores used. The system is running Scid¢mifix CERN 5.4
(SLC5), based on Red Hat Enterprise Linux 5 (Server). We compiledtie with GCC 4.1.2 in
64 bit, the standard compiler available with SLC5.

We do the average of the runtime (wall-clock time) by running 10 times each testwall-
clock time spent by the generation of a single sample (i. e. one pseudoregpy with 10,000
events is 30.4 seconds when running in sequential. This time increases lwéharthe number
of events and with the number of pseudo-experiments. Note that in this weekevfocusing on
the parallelization of a single pseudo-experiment, but we should consatarghally the number
of pseudo-experiments is in the order of thousands for a data analysisatipn, which means a
significant amount of total time for executing the application.

We consider two cases in our tests:

e Weak scaling tests. These tests focus on the scalability, which is defined as throughput.

We increase the number of events to generate proportionally to the numbpeocasses
involved in the parallelization. In an ideal case, as more processes with warkeare
added, one would expect the throughput to grow proportionally to thedadebources. We
take as reference the generation of a sample with 10,000 events. Reghisefficiency
of the parallelization are shown in figure 3. The efficiency is defined asdhlkng of the
software relative to the sequential runtime, confronted with ideal scalitegrdaed by the
core count. In cases where multiple hardware threads are being w=éektscaling is
defined by the maximum core count of the system (12). From the plot wenaba good
scaling up to 6 processes (99.0% with 6 processes). The small detrdhseefficiency is
consistent with the overhead introduced by the parallelization. Over @gses we observe
a drop in the efficiency (90.9% with 12 processes), which is not attributaltlee overhead
of the parallelization. We think that the reason for this drop is the data aedess the
application is running on the 2 CPUs (note that 6 is the number of cores). TRe
efficiency curve surpasses 100%, since for thread counts highet ha&xpected scalability
is fixed to 12x. Thus a final value of 108.3% indicates that the system logitle@4 threads
of the benchmark yields 8.3% more throughput than a perfectly scaled\sens&on on 12
physical cores. One should note that this extra 8.3% of performanceésitiafor a penalty
in memory usage, as the number of software processes is double the opecasénof 12
cores.

e Strong scaling tests: In this case we are interested to see the speed-up of the application for

a fixed number of generated events. For this reason we do not usertiveaha threading.
Results are shown in figufé 4. We observe a excellent scaling. The semallty is due
two factors: the overhead introduced by the parallelization, and the aailgdizable part
of the application (mainly the data handling), which represents less than 0.8% total

sequential execution time.

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

Weak scaling

120

80

)

Efficiency (%)

70

60

50 | | | | | 1 | | | 1 | |
0 2 4 6 8 10 12 14 16 18 20 22 24

Processes

Figure 3: Efficiency in case of weak scaling test (see text for details)

Strong scaling
14
12
10
S 8
k=]
g L
(% 6 —— lIdeal speed-up
L —&— # Events = 10,000
4 --¥-- # Events = 50,000
L # Events = 100,000
2
0 | | | | | | |

0 2 4 6 8 10 12 14

Processes

Figure 4: Speed-up in case of strong scaling test (see text for detale perform 3 tests with 10,000,
50,000, and 100,000 generated events. Black line repsetemideal speed-up, which corresponds to the
number of processes used in the parallelization.

4. Conclusion

The algorithm adopted for parallelization gives good results for the tedtaped. It satisfies
the requisite to obtain the same generated events (same values in the sajnedegendently by
the number of parallel processes. The implementation will be made available theidRooFit
package (as part of ROOT framework)][10] in the new releasesjdingva general interface for
the parallel generation of sample for pseudo-experiments.

Parallelization of events generation for data analysis@Eques Alfio Lazzaro

Acknowledgments

The work has been performed under the HPC-EUROPA2 project (projamber: 228398)
with the support of the European Commission - Capacities Area - Resedraitiuctures. We
would like to thank W. Verkerke at NIKHEF for the collaboration, D. Vegkien and C. Schrijvers
at SARA and HPC-EUROPA2 people for organizing the visit at NIKHE# &. Cerizza, V. In-
nocente, L. Moneta, A. Nowak, S. Jarp at CERN for the fruitful sstjges for doing the parallel
implementation.

References

[1] G. Cowan,Statistical Data AnalysiClarendon Press (1998).
[2] J. Friedman, T. Hastie, R. Tibshirafiihe Elements of Statistical Learnirngpringer (2001).

[3] A.Lazzaro and L. MonetaVlINUIT package parallelization and applications using fReoFit
packageJ. Phys.: Conf. SeR19 042044 (2010).

[4] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flampn Numerical Recipes: The Art of
Scientific ComputingThird Edition, Cambridge University Press (2007).

[5] M. Matsumoto and T. NishimuraJlonte Carlo and Quasi-Monte Carlo Methods 19$pringer
(2000), pp. 56-69.

[6] P. HellekalekDon't trust parallel Monte Carlo} proceeding of Parallel and Distributed Simulation
(1998), pp. 82-89.

[7] H. Bauke and S. MertenRandom numbers for large-scale distributed Monte Carlautations
Phys. Rev. 5, 6, 066701 (2007).

[8] See the Tina's Random Number Generator Library webpage:
URL: /http://trng. berlios. de/.

[9] G.J.Feldman and R. D. Cousindnified approach to the classical statistical analysis oBm
signals Phys. Rev. [»7, 7, 3873 (1998).

[10] See the web page of the ROOT projadRL: htt p: //root. cern.ch/.

