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1. Introduction

The symbolic manipulation system FORM [1] which is available already more tbgea&rs,
is specialized to handle very large algebraic expressions of billions of terms efficient and
reliable way. It is widely used, in particular in the framework of perturleat@uantum Field
Theory, where sometimes hundreds of thousands of Feynman diagreets linee computed; most
of the spectacular calculations of refs [2, 3] would hardly have bessiple with other available
systems. However, the abilities of FORM are also quite useful in other fiésisence where the
manipulation of huge expressions is necessary.

Parallelization is one of the most efficient ways to increase performanoee $nternal
specifics [4] make FORM very well suitable for parallelization so the idea talletize FORM
is quite natural.

2. General conceptsand modelsin use

The general concept of FORM parallelization is as follows [4, 5, 6]: nufhe startup, the
program launchesmasterand severavorkers FORM treats each expression individually, which
allows the master to split incoming expressions into independent chunis c&ak is processed
by workers in parallel, and then the master collects the results.

At present, we have two different models [5, 6]:Rar FORM[4] the master and workers are
independent processes communicating via M inTFORM[6] master and workers are separate
thread$ of a multithreaded process.

Both models require almost no special efforts for parallel programmin§GiRM programs
may be executed in parallel without any changings. The user may giv&/FdRie hints of how to
parallelize some things better; these hints are simply ignored by the sequergiahvof FORM.

Since TFORM uses common address space, it is runnable only on SMP teosapOn the
other hand, sometimes it permits more efficient parallelization, and it doesepend on MPI
which make it much easier for deployment. ParFORM can be used not orfjidhcomputers
but also in clusters and Massive Parallel Processors (MPP).

3. Performance

Both ParFORM and TFORM demonstrate approximately the same speedyp Heré we
discuss TFORM running the Multiple Zeta Value program [7] on the compyfeguad5” at DESY.
The computer has 96 GB of main memory and 8 independent CPU corestabiivefnumber of
CPU cores is 16 due to hyperthreading. The results are given in Fig. 1.

For reference, the run with FORM (the sequential version) took 576@8 s

We see three regions: first, the speedup is almost linear up to 8 workeos1ds the speedup
is also almost linear in the range of 8-16 workers but with much less slodeaftar 16 workers
we observe a saturation. When we looked at the total amount of CPU timekiged] we see the
total CPU time is more or less constant up to 8 workers and above 16 wolketise range of

1A Message Passing Interface, see http://www.mpi-forum.org/
2TEFORM uses POSIX threads, or pthreads



Parallel FORM M. Tentyukov

50000
40000

30000

Time (s

10000
8000

2 3 4 Workers 8 10 20 30

Figure1: Running times of the Multiple Zeta Value TFORM program. Thag were for weight 23, up to
depth 7.
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Figure 2: Total CPU time of the Multiple Zeta Value TFORM program.

8-16 workers however itincreases steadily. This is responsible fatdlaner decline in real time in
the first graph, because the pseudo efficiency (total CPU time divideglabyime and divided by
number of workers) remains more or less the same in this range. This isitaghtdat is typical
for hyperthreading. The total amount of work that can be obtained thisrtcomputer is about 9.5
times the amount that can be obtained from a single core.

The analysis of the data reveals also that TFORM needs about 20%eaddidr the Multiple
Zeta Program. This is more than for programs like Mincer. This may be due testhef brackets
from the master expression which may involve copious use of locks. Thislisa completely
clear though. The result is that for 8 workers the pseudo speedup CBta time divided by
realtime) is 7.63 while the real speedup (compared to the FORM run) is 6.22oudde, this is
still very good. The maximum improvement we obtained was 7.45 for a run witiotkers.

4. Recent development

Over the past years parallel FORM versions have picked up a numhendieatures:

e Dallar variables. By default, both ParFORM and TFORM switch into the sequential mode
for each module which gives dollar variables a value during executiorthBre are common
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cases when some dollar variables obtained from each term in each crubk processed in
parallel in order to get a minimum value, a maximum, or a sum of results. Also tsoese
at the end of the processing of a term the value of the dollar variable is nottamp at all.
Hence new module options have been implemented to help FORM to procesedhables
in parallel:m ni mum maxi num sumandl| ocal .

e Right-hand side expressions (RHS). This is not a problem for TFORM since all threads
work with the same file system while it is a big problem for ParFORM since thesexp
sion may be situated in a scratch file but different nodes may have indepestatch file
systems. For a long time ParFORM forced evaluation of modules with RHSsskpns in
sequential mode. Now ParFORM is able to perform RHS expressionsahgamallel mode.

e InParallel statement. A new statement was inplementeédpar al | el ; . This statement
allows the execution of complete expressions in a single worker simultaneotisiy is
really useful when there are many short expressions, sometimes ieggigsificant increase
in efficiency.

In Fig. 3 we summarize the speedup curves for the TFORM running the M@ytam on 8 CPU
cores computer when various features are switched off/on. The légémafollowing:
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Figure 3: Results of the MZV program runs with various features svéttioff/on. The runs were for
weight 20, up to depth 8.

All par — all above mentioned features are implemented,;

¢ RHSseq — modules with RHS expressions are forced into the sequential mode;
e NoDol — modules with dollar variables are forced into the sequential mode;

e Nolnar — no InParallel statements;

e NolnPar,NoDol — modules with dollar variables are forced into the sequential mode, no
InParallel statements;

¢ RHSseq,NolnPar modules with RHS expressions are forced into the sequential mode, no
InParallel statements.
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As we can see, all these new features are really important.

If FORM programs have to run for a long time the reliability of the hardward tresoftware
infrastructure becomes a critical issue. Program termination due to geardailures may waste
days or weeks of invested execution time. The checkpoint mechanism traduiced to protect
long running FORM programs as good as possible from such accidetgabiptions. With acti-
vated checkpoints FORM will save its internal state and data from time to time oratdedisk.
This data then allows a recovery from a crash. The parallel FORM versigpport this mechanism
as well.

By default, data are saved at the end of each module. Usually this is toostgeOptionally,
the data may be saved only after some time interval. The scalability for ParFOiiihg BAICER
N=16 for different intervals between checkpoints is depicted in Fig. 4oescan see, even very

20000 55 M T T T T | |
18000 &: - 5+
16000 = - 45
& 14000 - B R e e o 4F
o 12000 |- ‘ ! : ‘ .%35 R
E 10000 Y- : : 3 A AU
" 8000 | S — 251 A Nochdk —e—
L I D S min _
ped . S 207 fmn e
2000 i Nymber jof workers | .1 _é; i Number gf workers | i
1

1 2 3 4 5 6 7 2 3 4 5 6 7

Figure4: Absolute time and speedup curves for the test program BAI@EROuUt checkpoint mechanism
(“NoChck™), checkpoints every 30 minutes (“30 min”) and gv&0 minutes(“10 min”).

frequent checkpoints do not affect performance much.
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