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We provide a technique which makes an efficient numerical evaluation feasible for the n-
dimensional triangle functions and n+2-dimensional box functions, resulting from a reduction of
the one-loop hexagon integral. At the level of the three- and four-point functions, a dimensional
recursion of an adaptive numerical integration with extrapolation is effective for the correspond-
ing low-dimensional integrals, even to integrate through threshold singularities present in cases
of physical kinematics. An important reason for the reduction to these levels (in lieu of resorting
to analytical formulas at a higher level), is that infrared divergences are made transparent so they
can be separated. We give results for various sets of kinematic configurations, showing the feasi-
bility and accuracy of the approach. Thus a bridge is provided between the computations of the
reduction and direct numerical integration at a lower level.
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1. Introduction

The one-loop n-dimensional hexagon function can be reduced into (a linear combination of) n+2-
dimensional box functions and n-dimensional triangle functions at the lowest level. A reduction
to this level is preferred to, e.g., an analytic evaluation at a higher level as it uncovers and allows
separating terms arising due to possible IR divergence. The basic n-dimensional triangle and box
functions are expressed as two- and three-dimensional integrals, respectively [6].

For physical kinematics, the integrand functions may depict non-integrable singularities through
vanishing denominators, but the expression has physical meaning by considering the function in
the complex plane and taking the limit of the integral as a parameter approaches zero. In this
paper we give a numerical approach by (i) addressing the limit via convergence acceleration (ex-
trapolation) of a sequence of integrals; and (ii) approximating each integral in the sequence by a
one-dimensional adaptive integration applied recursively in each integration direction. We refer to
the latter as dimensional recursion. In general, the integrals of the sequence in (ii) have integrable
singularities for physical kinematics and can be targeted by an adaptive domain partitioning.

We illustrate the numerical procedure by a simple example, for lim
α→0

∫ 1
0 dx1

∫ 1
0 dx2 I(α) f where

I(α) f =
∫ 1

0
dx1

∫ 1

0
dx2

2αx2

(x1 + x2−1)2 +α2 = 2arctan
1
α
−α log(1+

1
α2 ). (1.1)

Table 1 lists integral approximations Q(α) f for α = 10−p, p = 0,1, . . . ,7. The values in the second
column are obtained by dimensional recursion of the integration code DQAGE from the QUAD-
PACK [10] package, with corresponding absolute error |Q f − I f | and the number of integrand
evaluations (as a measure of the computational effort) for the integral approximation in columns 6
and 7, respectively.

The dimensional recursion adaptive procedure works well for this problem, where the inte-
grand has a ridge at x1 + x2− 1 = 0, which becomes steeper with decreasing α. The procedure is
justified in [9] and an error strategy is given in [7]. For comparison, the absolute error and num-
ber of evaluations for the standard adaptive multivariate integration code DCUHRE [1] are given
in the last two columns [7]. The maximum number of evaluations was set to 100 million and the
performance of DCUHRE breaks down for p≥ 5.

The columns in Table 1 under Extrapolation are obtained by convergence acceleration of the
first column using the ε-algorithm [11]. The convergence (to π) improves in successive columns.

p Q(10−p) f Extrapolation DQAGE × DQAGE DCUHRE

ABS. ERR. # EVAL. ABS. ERR. # EVAL.
0 0.877649149 1.11e-16 225 1.24e-12 3843
1 2.480743286 3.315088757 0.00e+00 21255 2.06e-12 144165
2 3.029488916 3.146268404 3.141547464 2.40e-13 93135 5.96e-12 199867
3 3.125777143 3.141849664 3.141592605 3.141592651 3.49e-13 208035 1.37e-12 21040551
4 3.139550588 3.141610354 3.141592651 3.141592657 1.58e-13 388125 8.04e-12 99999963
5 3.141342396 3.141594001 3.141592656 4.49e-13 561585 4.40e-07 99999963
6 3.141563021 3.141592765 4.49e-13 561585 4.40e-07 99999963
7 3.141589231 1.42e-10 686745 1.99e+00 99999963

Table 1: Sample problem: dimensional recursion and extrapolation
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For p≥ 2, a new lower diagonal is added to the triangular extrapolation table.
The validity of the extrapolation procedure depends on the asymptotic behavior of the given

sequence as α → 0. Note that (1.1) can be expanded using arctan 1
α

= π/2−α + α3/3−α5/5 +
. . . , |α < 1|. Knowledge of the expansion justifies linear extrapolation methods in this case. The
ε-algorithm is known to be valid for an underlying expansion with terms of the general forms αν

and αν logk(α), with real ν and k ≥ 0 integer.
With respect to subsequent sections, an overview of the reduction procedure for the loop in-

tegrals is given in Section 2. Section 3 presents our numerical evaluation of the triangle and box
building blocks and results are given in Section 4.

2. Reduction of n-dimensional N-point function

We consider a representation of the n-dimensional N-point function given by

In
N = (−1)N

Γ(N−n/2)
∫

∞

0
δ (1−

N

∑
j=1

x j)
U N−n

F N−n/2 (2.1)

where the functions U and F are determined by the momentum representation of the correspond-
ing graph. Through the reduction formalism applied in [4, 6], the n-dimensional hexagon, pentagon
and box functions are expressed in terms of n-dimensional triangle and n+2-dimensional box func-
tions.

In non-exceptional kinematic conditions where the leading singularity of the N-point func-
tion [8] is not probed, the reduction is based on

In
N =

N

∑
k=1

BkIN−1,k +(N−n−1)
det(G)
det(S)

In+2
N , (2.2)

det(S) 6= 0, where G is the Gram matrix, Gk` = −(r` − rk)2, with r` = ∑
`
j=1 p j and p j are the

external momenta; furthermore Sk` =−(r`− rk)2 +m2
` +m2

k , 1≤ k, `≤ N.

The reduction coefficients are defined as

Bk =−
N

∑
`=1

S−1
k` , (2.3)

and can be obtained by solving the system of linear equations ∑
N
`=1 Sk`B` =−1, k = 1, . . . ,N.

In view of rank(S) = min{6,N}, it follows that det(S) = 0 for N > 6. In cases where the matrix
S is singular, the matrix inverse in the representation of the reduction coefficients can be replaced
by its pseudo-inverse [3]. Furthermore, in non-exceptional kinematic conditions, N-point functions
with N ≥ 6 can be expressed in terms of pentagon functions since rank(G) = min{4,N−1}.

The reduction of the n-dimensional hexagon function results in:

hexagon In
6 = a linear combination of six pentagon In

5 functions;
pentagon In

5 = a linear combination of five box In
4 functions + O(4−n);

box In
4 = a linear combination of four triangle In

3 functions and a box In+2
4 function.
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In order to account for IR divergence where n = 4− 2ε, the O term in the pentagon reduction
vanishes in the limit as n→ 4.

Thus we are left with the computation of a set of triangle functions In
3 and box functions

In̂
4 with n̂ = n + 2. According to the topology of the one-loop graph, the numerator of (2.1) is
U (x) = ∑

N
j=1 x j, since each chord through a single cut of the loop gives rise to a degree-1 monomial

x j, and U corresponds to the sum of these monomials (see, e.g., [5]). The denominator is

F (x) = F̂ (x)+U (x)
N

∑
j=1

x jm2
j , (2.4)

where F̂ (x) is defined in terms of the Mandelstam variables s j = p2
j and si j... = (pi + p j + . . .)2.

For the functions In
3 (s1,s2,s3,m2

1,m
2
2,m

2
3) and In̂

4 (s12,s23,s1,s2,s3,s4,m2
1,m

2
2,m

2
3,m

2
4), define

the kinematic matrices

Ŝ(3) =

 0 s2 s1

s2 0 s3

s1 s2 0

 and Ŝ(4) =


0 s2 s23 s1

s2 0 s3 s12

s23 s3 0 s4

s1 s12 s4 0

 (2.5)

for N = 3 and N = 4, respectively, and let S = Ŝ +M, Mk` = m2
k +m2

` , for k, ` = 1, . . . ,N; then

F̂ (x) = xτ Ŝx/2, and F (x) = xτSx/2

and In
3 and In̂

4 follow from (2.1) and (2.4) with denominators

FTri = (−s1)x3x1 +(−s2)x1x2 +(−s3)x2x3 +(x1 + x2 + x3)
3

∑
j=1

x jm2
j − iδ

and

FBox = (−s12)x4x2 +(−s23)x1x3 +(−s1)x4x1 +(−s2)x1x2 +(−s3)x2x3 +(−s4)x3x4

+(x1 + x2 + x3 + x4)∑
4
j=1 x jm2

j − iδ .

The reduction follows (2.2) for N ≥ 4, with S determined via Ŝ(4) in (2.5) and det(G) = −(B1 +
B2 +B3 +B4)det(S).

3. Recursive Integration for Triangle and Box Functions

3.1 Triangle functions

For an evaluation of In
3 , the δ -function can be removed in favor of one of the variables, e.g., by

setting x3 = 1− x1− x2 and taking the integral over the unit triangle x1 + x2 ≤ 1, x1 ≥ 0,x2 ≥ 0.

The resulting integrand function may have a vanishing denominator. Apart from a possible IR
singularity at x1 = x2 = 0, e.g., with m3 = 0, the quadratic denominator my be zero within the
integration region.

The IR singularity can be separated from the integral as in [6] through sector decomposition
and expansion of the integrand in the resulting sector functions. Furthermore, successive sector
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decompositions can be applied to separate overlapping singularities. In the following we apply
one level of sector decomposition, which eliminates the δ -function in the integrand of (2.1) in a
symmetric way.

In
3 is split into three sector functions,

In
3 (s1,s2,s3,m2

1,m
2
2,m

2
3) =−Γ(3−n/2) ∑

P(1,2,3)

Sn
Tri(s2,s3,s1,m2

2,m
2
3,m

2
1) (3.1)

where P(1,2,3) is the set of cyclic permutations of (1,2,3).
The IR divergent case is treated in depth in [6]. We focus on the numerical evaluation of the

basic integrals for n = 4,

S4
Tri(s1,s2,s3,m2

1,m
2
2,m

2
3) =

∫ 1

0
dt1dt2

1
1+ t1 + t2

1
At2

2 +Bt2 +C− iδ
, (3.2)

where A is quadratic, B is linear and C constant in the integration variable t1.
For the evaluation in [6], the inner integral (in t2) is obtained analytically, and the outer in-

tegration (in t1) is performed numerically with the QUADPACK program DQAGS [10]. Whilst the
strategy of DQAGS handles a class of singularities at the end-points of the integration interval, it
has no mechanism to handle singularities at arbitrary points in the interior of the integration inter-
val, other than its adaptive subdivision process to narrow in on a singular spot. The analytic outer
integrand of (3.2) generally has 1/square root and logarithmic singularities in the interior of the
integration domain.

Even though the NUMERIC × ANALYTIC method of [6] works well in 2D, it does not for the
box functions. In 3D they resort to a Monte Carlo integration in the vicinity of the singularity for the
outer (2D) NUMERIC integration, combined with a multivariate adaptive method (of DCUHRE [2]).
We propose a simple recursive procedure of a numerical integration in each coordinate direction,
for which we use a general adaptive integration program, DQAGE from QUADPACK. We first
illustrate the method for the 2D triangle integral, DQAGE×DQAGE f ≈ I1(I2 f ), where f (t1, t2) is
the integrand of (3.2).

Splitting the real and imaginary parts of the integrand and setting D = At2
2 +Bt2 +C yields

S4
Tri(s1,s2,s3,m2

1,m
2
2,m

2
3) = I1[I2 f ] =

∫ 1

0
dt1

[∫ 1

0
dt2

1
1+ t1 + t2

D+ iδ
(D2 +δ 2)

]
. (3.3)

Figure 1 shows plots of I2 f (t1, t2) as a function of t1, evaluated in the course of the outer DQAGE

integration for Sn=4
Tri (6,4,1,1,1,1) and Sn=4

Tri (10,4, 5
2 ,1,1,1) with δ = 10−12 in (3.3). These match

the analytic calculation of I2 f in [6] and demonstrate the ability of DQAGE to track the singular
behavior adequately. Sample Fortran code for I2 f (t1) is given in Figure 2. The top level routine of
DQAGE is duplicated as DQAGEX and DQAGEY to simulate the recursive call in Fortran. The main
program (not shown) calls DQAGEX for the computation of the outer integral I1(I2 f (t1)).

3.2 Box functions

Sector decomposition of In+2
4 delivers four sector integrals of the form Sn+2

Box . For n = 4 this is

S6
Box(s12,s23,s1,s2,s3,s4,m2

1,m
2
2,m

2
3,m

2
4) =

∫ 1

0
dt1dt2dt3

1
(1+ t1 + t2 + t3)2

1
At2

2 +Bt2 +C− iδ
.

(3.4)
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Figure 1: Numerical evaluation of (Left:) S4
Tri(6,4,1,1,1,1) and (Right:) S4

Tri(10,4, 5
2 ,1,1,1) by DQAGE

double precision function fx(x)
implicit real*8(a-h,o-z)
parameter(nw = 1000)
dimension alist(nw),blist(nw),elist(nw)
dimension rlist(nw),iord(nw)
common/wrk/epsa,epsr,lim,keyy
common/limits/ay,by
common/args/xx
common/flags/iflagy
external fy
epsabs = epsa
epsrel = epsr
limit = lim
xx = x

C Integration in y direction
call Dqagey(fy,ay,by,epsabs,epsrel,keyy,limit,result,

* abserr,neval,ier,alist,list,rlist,elist,iord,last)
if(ier.ne.0) iflagy = iflagy+1
fx = result
return
end

double precision function fy(y)
implicit real*8(a-h,o-z)
common/pars/del,sqdel,dm1,dm2,dm3,s1,s2,s3
common/args/xx
common/icnt/dkount
dkount = dkount+1.d0
aa = dm2
bb = (dm1+dm2-s2)*xx+dm2+dm3-s3
cc = dm1*xx*xx+(dm1+dm3-s1)*xx+dm3
d = aa*y*y+bb*y+cc
denom = d*d+sqdel

C Real part
C fy = d/denom/(1+xx+y)
C Imaginary part

fy = del/denom/(1+xx+y)
return
end

Figure 2: Sample program for numerical evaluation of I2 f (t1, t2)

where A is constant, B is and C is a quadratic function in t1 and t2. In [6], the inner integral (in
t3) is evaluated analytically.

The analytic integrand has a complicated singularity structure. Apart from the fact that its
implementation requires incorporating many different cases depending on the values of the param-
eters, the singularity renders the outer 2D integration problematic. The latter is performed in [6]
using DCUHRE with a Monte Carlo integration in the vicinity of the singularity within the integra-
tion domain, where it is also mentioned that DCUHRE was used with a workspace limit of 350 MB
to allow for a maximum of 1.5 109 2D function evaluations. Furthermore, the slow convergence
rate of the MC integration is a problem.

6



P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
3

Recursive box and vertex integrations for one-loop hexagon reduction Elise de Doncker

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 200  250  300  350  400  450  500  550  600

’Box_Real’
’Box_Imag’

Figure 3: Threshold scan of 4-dimensional scalar box function

We find that we can efficiently compute the 3D integral recursively as a 1D×1D×1D integral,
with DQAGE from QUADPACK [10] in each direction, without specifying the location or nature of
the singularity.

4. Overview of results

We implemented the building block integrations (3.2) and (3.4) by dimensional recursion of
the one-dimensional adaptive algorithm of DQAGE from QUADPACK [10]. In order to allow com-
putations in the physical region, a sequence of integral approximations Q(δ ) is computed for a
geometric progression of δ with ratio 1

2 , for an extrapolation by the ε-algorithm [11]. We use
a modification of the ε-algorithm code in QUADPACK. For each new integral Q(δ ) in the origi-
nal sequence, the new lower diagonal of the triangular ε-algorithm table is calculated and a new
extrapolated value is returned.

The results in this paper are obtained for specified absolute error tolerances εa for the inte-
grations. For all sample problems reported, the maximum number of subdivisions allowed in the
adaptive partitioning process was fixed at 100 in each coordinate direction. The extrapolations
were started at δ = 1 and the maximum number of extrapolations was set to 20. The extrapolation
process was terminated normally when the extrapolated sequence converged within 0.1εa. All com-
putations were run on a Macbook Pro laptop computer with 3.06 GHz Intel Core 2 Duo processor
and 8 GB RAM.

As a test of the code for the 4-dimensional box function In=4
4 , Figure 3 displays a scan

of the 2mt = 350 GeV threshold of the box function from [6] with s12 = (Ecms/(2mt))2, s23 =
−(mZ/(2mt))2/2, s1 = s2 = (mZ/(2mt))2, s3 = s4 = (mb/(2mt))2, m2

1 = m2
2 = m2

4 = 1/4, m2
3 =

(mW /(2mt))2 and mt = mtop = 175 GeV, mZ = 90 GeV, mb = 5 GeV, mW = 80 GeV.

Other results are displayed in Table 2, for the Mandelstam variables listed in the first column.
The symmetric (I) and modified symmetric parameters (II) correspond to Euclidean points. The

7
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Symmetric Symmetric-mod Physical kinematics
Ŝ In

3 In+2
4 In

4 In
5 (I) In

6 (I) In
5 (II) In

6 (II) In
5 (III) In

6 (III)
s12 −1 −1 −1 −1 −1 −1 4 4
s23 −1 −1 −1 −1 −1 −1 −1/5 −1/5
s34 −1 −1 −1 −1 1/5 1/5
s45 −1 −1 −1 −1 3/10 2/5
s51 −1 −5/2 −1/2
s56 −1 −1 3/10
s61 −1 −1 −1/10
s123 −1 −1 1/10
s234 −1 −1 −3/10
s345 −1 −5/2 0.38189943
s1 −1 −1 −1 −1 −1 −1 −1 0 0
s2 −1 −1 −1 −1 −1 −1 −1 0 0
s3 −1 −1 −1 −1 −1 −1 −1 49/256 9/100
s4 −1 −1 −1 −1 −1 −1 9/100 9/100
s5 −1 −1 −1 −1 49/256 9/100
s6 −1 −1 9/100
m2

1 1 1 1 1 1 1 1 49/256 49/256
m2

2 1 1 1 1 1 1 1 49/256 49/256
m2

3 1 1 1 1 1 1 1 81/1600 49/256
m2

4 1 1 1 1 1 1 81/1600 49/256
m2

5 1 1 1 1 49/256 49/256
m2

6 1 1 49/256

-0.40114016217730431

0.128436075930926097

0.09916512227141025

-0.0354161150969322

0.0124998053283290

-0.0320346083730595

0.0135260268954910

ℜ
e

41.34025332219
ℑ

m
-45.9720825696

ℜ
e

-26.933830586
ℑ

m
48.6351969959

ℜe 132.8 ℜe 361.7
Time 10−6 0.00091 0.0176 0.0213 0.0972 0.586 0.0979 0.588

ℑm 127.6 ℑm 324.8
ℜe 412.7 ℜe 1395.2

Time 10−9 0.0034 0.0348 0.0485 0.228 1.370 0.258 1.493
ℑm 421.9 ℑm 1455.0

Time 10−16 0.0278 2.33 2.44 11.89 71.35 11.59 70.12

Table 2: Overview of results

physical points (III) for the n = 4-dimensional pentagon and hexagon functions correspond to kine-
matic configurations arising in the processes γγ → tt̄H and γγ →HHHH, respectively. In addition
to the masses listed above, mHiggs = 120 GeV is used and all kinematic parameters are scaled by
Ecms/2 = 400 GeV [6].

Results are given for high accuracy runs and match with the values given (to 4-digit accuracy)
in [6]. User times (in CPU seconds, using the Fortran function etime) are shown for runs performed
with requested integration accuracies of εa = 10−6,10−9 and 10−16 (the latter for the Euclidean re-
gion). Note that the accuracies are specified as error tolerances for the basic integral computations,
of which the errors will be combined in the linear combination of the n-point function.

It may be noted that, compared to a direct numerical computation at a higher level (e.g., the

8
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level of the box integrals In
4 given by (2.1)), the combined calculation of the lower level triangle

(3.2) and box (3.4) integrals is far more accurate and less time-consuming.

Conclusions

We give an efficient and accurate approach for a numerical computation of the basic triangle and
box functions resulting from a reduction of the one-loop hexagon function. Dimensional recursion
of a one-dimensional adaptive integration algorithm is ideal for multivariate integrals in two or three
dimensions where the integrand has some types of singularities in the interior of the integration
domain.

We have shown that the approach is effective for various sets of configurations in the physical
as well as the Euclidean region. This presents an interface between the higher level reductions and
the lower level direct numerical integration, thereby alleviating detailed analytical formulations and
their pitfalls associated with necessary knowledge of the location and structure of the singularity as
well as possible cancellation errors.
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