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This study is targeted to the NLO corrections of multilegqasses, very important for the LHC.
Starting from the construction of Feynman diagrams, théyéical reduction of general one-loop
integrals to scalar master ones, the calculation of coloicgires, manipulation of spinor lines
and other amplitude constituents and finally phase space peliection are obtained by use of a
program producing Fortran code for numerical calculatiboree-loop corrections for processes
like gg — ttgg.
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1. Introduction

The era of LHC has finally arrived, after many years of waiting and ardiiig, and all the
particle physics community is waiting for the first results. There has beendd #attivity the last
two years in the branch of NLO calculation. With almost all interesting cas@s-of3 processes
having been calculated, the interest has moved towardgi2 Processes likpp — tt+ bb [[l, B, B]
W + 3jet production [#]aqg — bBbB[E] and most recently the case pp — tt + 2jets[f] have been
studied in the last three years, providing the background for futuredisies. This study is also
towards this direction.

2. Themethod

Our method is based on the Feynman diagrammatic approach. Which meane ttedtwate
the total amplitude by taking into consideration the contributions of each of théomp Feynman
diagrams that exist for the NLO calculation. The final program calculatiagthplitude is in For-
tran, although a variety of tools are used in combination (see Fjgure 2)alififior constructing
the diagrams, Forn{][8] for manipulation of the Diana output (the steps ofilegicn in Form are
colored red), Maple for optimization of the produced Fortran code (geeéor) and finally Fortran
for the numerical evaluation (blue color). In the next session we will éxplamore detail the
complete calculation, which ends by providing the amplitude from an initial péaasee point.

2.1 The stepsof the calculation

As mentioned above, the first step is implemented by using Diana. We provigedtpeam
with the appropriate Feynman rules and ask for the construction of diagr&msthe case of
gg — ttgg the total number of diagrams is 4510. Diana provides us with an output in Fhiah
we further manipulate. The next step is to strip the one-loop amplitude fromotbestructures.
In a few words using Form to manipulate the output of Diana we strip off ancipukate the
color structures using color Algebra. We translate the Form result todfodode and end up
with a Fortran array containing all the possible color information. For the ofigg — ttgg there
are 50 color structures, which can be further divided in 4 main colorggoiRepresentatives of
each group are shown in Taljle 1. All other color structures are peatifiom these ones through
permutations of the external gluons.

Color Structures Number of cases
(TOATO2TasT )¢ ¢ 24
Tr{TOTO2}(TAOT%)¢ g, 12
Tr{TOTO2ToB}(T%%)¢ ¢, 8
Tr{TOT2THBT %} 5 1, 6

Table 1. Color groups for thegg — ttgg case. The number of cases refers to all the possible peiiongat
of the gluons

The next step is the manipulation of the color stripped amplitude. What is leftthéeolor
bracketing is the spinor line connecting the two external fermibmsth all the possible ways and
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the rest are the tensor integrals and scalar products of external momedtecgd by propagators
outside the loop and finally the polarization vectors of the gluons.

The spinor line contribution is calculated by Fortran. After manipulating it uaihthe pos-
sible contracting equations and simplifying the result by moving the approprmateenta to the
corners of the spinors and applying the Dirac equation, we end up witlntipdest structure. Then
we glue the two spinors left and right and calculate the result numericallyrinaifio

The tensor integrals are identified and flagged by Form. There is a Fprimgram that calcu-
lates them according to the New Recursive Reduction Methddl of [9]. idgram called OLOTIC
(One LOop Tensor Integral Calculator), applies the formulas of therpgpeessing the tensor in-
tegrals in terms of scalar master integrals. In a few words, the idea of thetiexl is that, one-loop
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Figure 1. Graphical presentation of the tensor reduction procedure

n-point rankR tensor Feynman integrals [in shofh, R)-integrals] forn < 6 with R < n are repre-
sented in terms ofn, R— 1)- and(n—1,R—1)-integrals (see e.g. Figufg 1). The recursive scheme
is very convenient for explicit calculations and contains the complete ctitmdd chain of tensor
reduction, for both massive and massless propagators, and worksimghglonal regularization.
The general case of tensor integrals using dimensional regularizat®treeed in a series of pa-
pers [10[ T[22, 13, 114], thereby allowing also for massless partitlesonly necessary package
to be added is one for the evaluation of 1-point to 4-point scalar integfdlsse are calculated
by QcdLoop [1p]. This is a very interesting property of the reductiorabse using Fortran and
switching off the relative scalar master integrals we have all the informatidisthaeded to deter-
mine the coefficients of the scalar master integrals that arise in calculationstayity methods.
In the same way, by switching off all the scalar master integrals we can aisxethe rational
term. Finally, due to the capability of QcdLoop to give theand 1/ €2 terms, we can cross check
the correctness of our loop amplitude as these terms are proportional teé¢Hevel amplitude.
The stripped amplitude in total is optimized by Maple. We divide the total numbeagfaims
to groups of hexagons, pentagons, boxes, triangles, and bubiethen we translate the output
to Maple. Maple optimizes it and feeds it to a Fortran subroutine calculatingtipétade contri-
butions of the above groups. As mentioned above, these structureésgleecelored ones. So each
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one of them is multiplied with the appropriate color structure stored in the colwostine.

Connecting all the pieces together, the stripped amplitudes including tensgraistend
spinor lines separately calculated in specific subroutines, the color sgagiecalculated and
stored in an array, we calculate the total loop amplitude. In the same way, msiolg simpler
routines, we calculate the tree level case.

DIANA
Diagram
construction
Output (form)

MADGRAPH
momenta.dat

Figure 2: Graphical presentation of the caseggf— ttgg

The biggest advantage of the program is the fact that it is flexible. With nolmeomges, we can
implement it for calculating different processes. We just have to provided®with the process
that we are interested in, fix the Feynman rules and be careful with manipudtmssible spinor
lines and colors. All the rest, tensor reduction and optimization of the ceddaare automatically
by the program.
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