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1. Introduction

Next-to-leading order (NLO) in QCD predictions consisthufge distinct contributions, which
can schematically presented as

O.NLO — / daBorn+/ do.virt. + dareal. (1.1)
m m m+-1

The first term is the Born contribution, which is the leadinder (LO) contribution to the process
under consideration. The second term is the virtual cantioh that consists of the sameparticle
final state as the Born, but has one more power of the strongliogu This means that there must
be a closed loop of particles with a momentum that has to kegiated over in the diagrams
contributing to this term. The third term in Eq. (1.1) is tlealrcontribution. Also this contribution
has one power of the strong coupling more than the Born danioins, but also one QCD parton
extra in the final state, which may or may not be resolved. Hglile the Born, this is a tree-level
contribution.

The sum of the three contributions in Eq. (1.1) is finite, Inat individual contributions can be
divergent. In particular, the loop integral in the (ultralet renormalized) virtual corrections over
the internal momentum is divergent. Also the phase-spaegrial over the (possibly) unresolved
particle in the real emission is divergent. These divergerare of infrared origin and only after the
virtual and the real-emission contributions are addedttagethey cancel against each other. In
almost all practical calculations for NLO QCD predictiohgse integrations are performed using a
dimensional regularization scheme in which the dimensiahese integrals is shifted away from
4, conventionally by a factore2 After integration the divergences will show up as explites in
1/¢ and their cancellation can be verified explicitly.

The calculation of an integral in a non-integer number ofeafisions can only be done ana-
Iytically. But experimental analyses require the posgibib make complicated phase-space cuts
and therefore it is an impossible task to perform the phpseesintegrals by analytic means. A
Monte Carlo technique is favoured. However, this numeapgroach implies that the phase-space
integrals have to be performed in 4 dimensions, which leadsftared divergences for the real-
emission contributions.

There are two classes of solutions to this problem. Theyladapproximate) phase-space
slicing or the (exact) subtraction method; it is nowadaysnawledged that the slicing method
is unsuited for describing complicated final states, sucthase in multi-jet production. In the
subtraction method a term which has the same singularitgtstre as the real-emission corrections
is added to these contributions. This cancels the infrainegtgkences in the phase space integral.
The subtraction terms should be simple enough such thatgarticle phase-space integral (of
the unresolved particle) can be done analytically in dirmra regularization. Schematically we
can write this as:

O.NLO:/ [dO.Born+davirt._|_/dasubtr.] _|_/ [dareal_do.subtr.]' (1'2)
m 1 m+1

The remaining phase-space integrals can now be perfornmadmually and give finite results for
infrared-safe observables.
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Recently the generation of these subtraction terms hasdmepletely automated. There are
three different levels of automation that the availablekpges aim for. Firstly, there are the codes
that simply take care of the bookkeeping and automate thergton of the subtraction terms for
a given process. These can then be copied into a separateuprég compute the phase-space
integrals etc. The second possibility is to have the full Ntdbnputation Eq. (1.2) automated. This
includes the phase-space integration. Usually the vitoalections are linked from an external
package through the Binoth-Les Houches Accord interfageTHirdly, there is a class of packages
that aim for the automation of NLO computations and linkihgrh with parton showers. In this
process also the subtraction terms are needed.

The two most widely known and used subtraction methods areCtitani-Seymour dipole
subtraction [2, 3] and the FKS (or residue) subtraction byiéme, Kunszt and Signer [4,5]. In the
next section we shortly review these two methods, in se@iare discuss the available packages
that have these subtraction methods automated. We end slitbrasummary.

2. Automated subtraction

At the moment there are two subtraction schemes automatedniputer codes: the FKS
(or residue) subtraction and the Catani-Seymour dipole g€Btraction. These two subtraction
schemes will be reviewed here in a schematic way.

For more detailed explanations we refer to the papers of. R3] and Refs. [4—6] for the CS
and FKS subtraction schemes, respectively.

2.1 FKSsubtraction

The real-emission contribution in Eq. (1.1) can be writtehesnatically as
do'™ =M™ 2dgn. 1, (2.1)

where|M™1|2 is the matrix element squared anghg; the phase-space measure. The matrix
element squared blows tifike %rly” whereé; is the energy of final state partidléin the partonic
center-of-mass frame) over the total partonic enefgy; 2E; /+/$, andy; j is the cosine of the angle
between particlé and j, y;; = cos@;.

The crucial step in the FKS subtraction method is to realia¢ the phase-space can be parti-
tioned into regions that have at most one collinear and/ersoft divergence. This can be achieved

by multiplying Eqg. (2.1) by so-calle&functions
do™= % §;[M™2dgn, 1, (2.2)
ij-pairs

where theS-functions have been defined in such a way that they vanish gingular limits not
related to particlé becoming soft or particleisand j collinear and that the sum over all pairs gives
one, ¥ij-pairsSj = 1. The precise definition of th&functions used is not important. The result is

IThe phase space measure includes an implicit fatdi has been assumed that this has already canceled one of
the% in the matrix element squared.
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that each term of the sum in Eq. (2.2) is finite over all of phassce except if the energy of particle
i goes to zero or particlésand j become collinear.

Because we know exactly where the infrared singularitiesfar a given partition, it is now
relatively straight-forward to regularize these diverges This amounts to replacing each of the
terms in the sum of Eq. (2.2) by

1 1 . . . 12
<E>Em (1_—),”)50 &i(1—yij)S; IM™ @y 1, (2.3)

where we have used generalized plus distributions definigd assmooth test functiorfi(x), as
/dx(%) F(x) = /dx Ut f(oz(e()‘c“t =X (2.4)

This leads to (maximally) three counter terms for a sir(ghe+ 1)-particle event in a given phase-
space partition:

Xeut

e the soft counter event; = 0;
e the collinear counter eveny;; = 1,
e and the soft-collinear counter evedt:= 0 andy;; = 1,

Of course, for numerical evaluation the expliéjtand (1 —y;;) in Eq. (2.3) should be canceled
analytically against the divergences in the matrix elensgpuiared. But this yields no problem,
because it is appreciated that in the collinear limit thd-esaission matrix element squared is
equal to the Born times the Altarelli-Parisi splitting foioms and in the soft limit by the color-

linked Borns times the eikonals. This defines the last twms$anf Eq. (1.2).

In order not to change the NLO prediction, the “integrateotsaction terms” need to be added
to the virtual corrections,e., the third term in Eq. (1.2). The integral over the unresolparticle
can be performed analytically and is process independergsilts in terms proportional to the
(color-linked) Borns. For the explicit formulas of thest¢eigrated subtraction terms we refer to the
paper of Ref. [6].

2.2 Catani-Seymour dipole subtraction

The fundamental building blocks of the subtraction termshim dipole formalism [2, 3] are
dipole splitting functionsVjj x, which involve only three partons: emittgrunresolved parton,
spectatok. A dipole splitting function accounts for the collinear lirof j with i, and for part of
the soft limit of j in between andk. The dipole factors, which constitute the subtraction s&grm
are obtained by multiplication with reduced matrix elensemthere partong j andk are replaced
by recombined pseudo-partorjs k. The full soft behavior is recovered after summing all dépol
factors.

Here, we use the notation introduced in Refs. [2, 3]. Inddpahof whether we have initial or
final state particles we can write an arbitrary dipole in trerf

. T T
Dk~ ml.i], .k mt 1 w2 !
ij

Viikl L od] s Koy M4 L, (2.5)
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The amplitude factor§...| (‘bra’) and|...) (‘ket’) on the right hand side are tensors in color space.
The helicities of the external particles in them are a pficed (but can be summed over for un-
polarized processes), while the helicities of the psewattops are summed over after contraction
with the dipole splitting function.

In the limit of a large number of external particlss the number of subtraction terms needed
scales likeN3. Furthermore, due to different momentum mappings for eétirecdipoles, the Born
matrix elementsi.e., the bra’s and ket’s in Eq. (2.5), have to be computed mangdifar a given
real-emission phase-space point. Therefore the calonlafithe sum of all subtraction terms can
be more time consuming than the real emission itself. Aneclénick was introduced by Nagy to
restrict the phase space of the dipoles and therefore thages@umber of subtraction terms per
real-emission phase-space point is greatly reduced [7].

2.2.1 Phase space restriction

The calculation of the subtraction terms is only necessarthé vicinity of a soft and/or
collinear limit. Away from these limits the amplitude is fi@iand there is in principal no need
to calculate the computationally heavy subtraction teriig distinction between regions near to
a singularity from regions without need for a subtraction ba parameterized by the introduction
of a parameter usually labelled with o € [0, 1], which was introduced in Ref. [7] for processes
involving partons only in the final state. The case with ingogrhadronsij.e., with partons in the
initial state, is described in Ref. [8].

Using the notation of Ref. [8], the contribution from the sualbtion term to the differential
cross section can be written as

dogy =S dr™ Y (pa, py, Py, ... P+ 1)

[y Sint1)

X{ z Z Zij x(Pa, Po, P1, ---, pn+1)FJ(n)(pa, Pos P15 Bij s Bk --» Pns1)OYijk < Q)
p.alrsk7§|7j

+ Z |:@|?(pa7 pbv p17 sy pn+1)FJ(n)(f’a7 pb7 plv .y ﬁlj PR pn—i-l)e(l_ Xij-,a < a)

+(ae b)]

+ ; [in(pav pbv p17 sy pn+1)FJ(n)(f’a7 pb7 plv LX) ﬁkv LR pn+1)e(ui < a) + (aH b)i|
i

+ Z [-@ai’b(paa pb> pla (L) anrl)FJ(n)(f)aa pb> f)la LAES) f’n+l)@(\7i < a) + (a-<_’ b)] } .

|
(2.6)
The functionsZj x, 94"}‘ 9;3“ and 2@b are the dipole terms for the various combinations for emitte
and spectator.y (. 1) denotes the summation over all possible configurationsHisr(n+ 1)-
particle phase space which is labelledda$™? and the factolS;,, 1, is the symmetry factor for
identical particles. In general, different numerical \wfor a can be chosen for the final-final,
finial-initial, initial-final and initial-initial dipoles



The automation of subtraction schemes for next-to-leadidgr calculations in QCD  Rikkert Frederix

It has to be kept in mind that the integrated dipole factotsctvare to be added to the virtual
n-parton contribution, will also depend @n For the case of massless partons,dhédependence
of the integrated terms is stated in [7, 8] while for massigetgns results for most cases can be
found in [9-11].

3. Available packages

As explained in the introduction, there are three diregiohautomation. For each direction
there are packages available, which we will shortly deschiere.

3.1 Automation of the subtraction terms

The codes describe here are for the automation of the bopkigeend generation of the
subtraction terms only. In particular, they do not consitther phase-space integration. The two
packages described here are using the Catani-Seymoue @ipiofraction method and rely on Mad-
Graph [12] to generate the matrix elements.

MadDipole Given any real emission process, MadDipole [13] generdiasgrocess and all the
subtraction terms needed for it. Both the massless and thsiveadipoles have been imple-
mented, including the phase-space restriction accordingea parameter. The integrated
subtraction terms are all implemented and will be availzblen. It is available from any of
the MadGraph/MadEvent websitesg, ht t p: / / madgr aph. phys. ucl . ac. be/ .

AutoDipole Using external Mathematica routines for the bookkeepinh®tubtraction terms and
the generation of the color matrices of the subtraction sevhutoDipole [14] uses the Mad-
Graph matrix elements for the generation of the Born andeeassion contributions. It has
the (integrated) dipoles for both the massless and the weggaiticles, but lacks the de-
pendence to restrict the phase space of the dipoles. Théxadailable for download at the
webpagent t p: / / ww zeut hen. desy. de/ ~noch/ aut odi pol e/ i ndex. htmi .

3.2 FullNLO

Compared to the previous subsection, the packages thatevilescribed here aim at the full
automation of NLO computations, excluding the finite parthaf virtual corrections: they can do
the same as the codes in the previous section but on top dhthatain addition is the automation
of the phase space generation and integration. There aephckages publicly available that have
the CS dipoles automated, Sherpa [15], TevJet [16] and Heilaales [17], and one package that
will be publicly available in the near future that has the FBtraction implemented [6].

TevJet The TevJet package, written by Seymour and TevlitCi#, has the massless CS sub-
traction terms automated. The user must provide the ingnéglifor a NLO computation,
i.e, the Born and real emission matrix elements, the colorlihiand off-diagonal helicity
Borns, and the virtual corrections. The TevJet packagestakee of the bookkeeping and
generating the subtraction terms (for massless particibg.oGeneral purpose 2-, 3- and
4-body phase spaces are available within the package to &tloa phase-space integra-
tion. The code can be downloaded from the webgaigep: / / www. hep. man. ac. uk/
u/chris/tevjet/.
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Sherpa The first automation of the NLO subtraction terms was withia Sherpa package in
2007 [15]. It is based on the CS dipoles, including the massantributions and ther-
parameter restriction. It has a phase-space generataakbpeesigned to have an efficient
integration of the matrix elements minus subtraction territshas been proven to work
for complicated final states, in particular, together with BlackHat collaboration [18] has
given predictions fokV + 3 jets production at the Tevatron and LHC [19]. Recentlyai h
become publicly available and can be downloaded from thep@heebpageht t p: //
www. sher pa- nt. de/ .

Helac-Dipoles The third package that has an implementation of the CS diaéraction terms
is the Helac-Dipoles package [17], based upon the Helac &Garlo generator [20]. Like
the Sherpa implementation it also has the massless andvendfsbles implemented as well
as thea-parameter restriction of the dipole phase space. Furibvernit has the possibility
to have the subtraction terms for a given helicity configoratvhich allows for a Monte-
Carlo sum over helicities [17]. Also this code has been pnawework: e.g, it has given
predictions for the most impressite+ 2 jets predictions at hadron colliders [21], using the
Helac-1Loop package [22] for the virtual corrections. Thdecan be downloaded from the
Helac webpageht t p: / / hel ac- phegas. web. cern. ch/ hel ac- phegas/ .

MadFKS Contrary to the Sherpa, TevJet and the Helac-Dipoles paskdlge MadFKS code [6]

has the FKS subtraction implemented within the MadGraphkifid@nt MC event generator
[12]. Also in this code both the massless and massive stiotnaterms are implemented,
including the possible phase-space restriction for théraation terms. The possibility for
a Monte-Carlo sum over helicities is available as well. Remnore, due to the nature of
the FKS subtraction, it is also suited for subtraction folooed BSM particles. The most
impressive result obtained with the code, is the calculatib5 jets production at the LEP
collider at NLO [23]. For this calculation the finite part bt virtual corrections are provided
by the Rocket code [24], and have been checked using the Béagkrogram [18]. The

MadFKS code is not yet publicly available.

3.3 NLO with possible link to Parton Shower

Although in principle linking NLO calculations to parton@hiers does not dependent on the
subtraction method used, in practice, the only method préewevork (in hadron collisions) is the
FKS subtraction.

Powheg Box The recently written package ‘Powheg Box’ [25] persuitsatiyathis: the automa-
tion of the linking between the ingredients of a NLO compota and the parton shower.
It is a framework where the user should put in the variousrdmurtions to any NLO com-
putation,i.e., the Born, the real emission, the virtual corrections, terelinked Borns, the
off-diagonal helicity Borns and the Born phase space. Fiuesd ingredients the Powheg
Box builds a full NLO computation linked to a parton showerain automated way. In
particular it has also the FKS subtraction implemented & wéth the soft and collinear sin-
gularities. The Powheg Box can be downloaded fioim p: / / moby. mi b.infn.it/
~nason/ POMHEG .
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4. Summary

For NLO computation in QCD, there are various packagesabiailthat have the CS or FKS
subtraction methods automated. There are two public paskiigit focus on the automation of the
subtraction terms without having a specific phase-spacergem: MadDipole and AutoDipole.
There are also four packages that aim in automating the fiud Momputation: there are imple-
mentations of the CS dipoles in TevJet, Sherpa, and Hefaaadi, and there is an implementation
of the FKS subtraction in the MadGraph/MadEvent framewdlladFKS. Furthermore there is
the Powheg Box package that focusses on the automation &falvbeg method of linking fixed
order NLO computations to parton showers. In its internatkivgs, there is an automated FKS
subtraction implemented.
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