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1. Introduction

Next-to-leading order (NLO) in QCD predictions consist of three distinct contributions, which
can schematically presented as

σNLO =
∫

m
dσBorn+

∫

m
dσ virt. +

∫

m+1
dσ real. (1.1)

The first term is the Born contribution, which is the leading order (LO) contribution to the process
under consideration. The second term is the virtual contribution that consists of the samem-particle
final state as the Born, but has one more power of the strong coupling. This means that there must
be a closed loop of particles with a momentum that has to be integrated over in the diagrams
contributing to this term. The third term in Eq. (1.1) is the real contribution. Also this contribution
has one power of the strong coupling more than the Born contributions, but also one QCD parton
extra in the final state, which may or may not be resolved. Hence, like the Born, this is a tree-level
contribution.

The sum of the three contributions in Eq. (1.1) is finite, but the individual contributions can be
divergent. In particular, the loop integral in the (ultraviolet renormalized) virtual corrections over
the internal momentum is divergent. Also the phase-space integral over the (possibly) unresolved
particle in the real emission is divergent. These divergences are of infrared origin and only after the
virtual and the real-emission contributions are added together, they cancel against each other. In
almost all practical calculations for NLO QCD predictions these integrations are performed using a
dimensional regularization scheme in which the dimension of these integrals is shifted away from
4, conventionally by a factor 2ε . After integration the divergences will show up as explicitpoles in
1/ε and their cancellation can be verified explicitly.

The calculation of an integral in a non-integer number of dimensions can only be done ana-
lytically. But experimental analyses require the possibility to make complicated phase-space cuts
and therefore it is an impossible task to perform the phase-space integrals by analytic means. A
Monte Carlo technique is favoured. However, this numericalapproach implies that the phase-space
integrals have to be performed in 4 dimensions, which leads to infrared divergences for the real-
emission contributions.

There are two classes of solutions to this problem. They are the (approximate) phase-space
slicing or the (exact) subtraction method; it is nowadays acknowledged that the slicing method
is unsuited for describing complicated final states, such asthose in multi-jet production. In the
subtraction method a term which has the same singularity structure as the real-emission corrections
is added to these contributions. This cancels the infrared divergences in the phase space integral.
The subtraction terms should be simple enough such that the one-particle phase-space integral (of
the unresolved particle) can be done analytically in dimensional regularization. Schematically we
can write this as:

σNLO =

∫

m

[
dσBorn+dσ virt. +

∫

1
dσ subtr.

]
+

∫

m+1

[
dσ real−dσ subtr.

]
. (1.2)

The remaining phase-space integrals can now be performed numerically and give finite results for
infrared-safe observables.

2



P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
7

The automation of subtraction schemes for next-to-leadingorder calculations in QCD Rikkert Frederix

Recently the generation of these subtraction terms has beencompletely automated. There are
three different levels of automation that the available packages aim for. Firstly, there are the codes
that simply take care of the bookkeeping and automate the generation of the subtraction terms for
a given process. These can then be copied into a separate program to compute the phase-space
integrals etc. The second possibility is to have the full NLOcomputation Eq. (1.2) automated. This
includes the phase-space integration. Usually the virtualcorrections are linked from an external
package through the Binoth-Les Houches Accord interface [1]. Thirdly, there is a class of packages
that aim for the automation of NLO computations and linking them with parton showers. In this
process also the subtraction terms are needed.

The two most widely known and used subtraction methods are the Catani-Seymour dipole
subtraction [2,3] and the FKS (or residue) subtraction by Frixione, Kunszt and Signer [4,5]. In the
next section we shortly review these two methods, in section3 we discuss the available packages
that have these subtraction methods automated. We end with ashort summary.

2. Automated subtraction

At the moment there are two subtraction schemes automated incomputer codes: the FKS
(or residue) subtraction and the Catani-Seymour dipole (CS) subtraction. These two subtraction
schemes will be reviewed here in a schematic way.

For more detailed explanations we refer to the papers of Refs. [2,3] and Refs. [4–6] for the CS
and FKS subtraction schemes, respectively.

2.1 FKS subtraction

The real-emission contribution in Eq. (1.1) can be written schematically as

dσ real = |Mm+1|2dφm+1, (2.1)

where |Mm+1|2 is the matrix element squared and dφm+1 the phase-space measure. The matrix
element squared blows up1 like 1

ξi

1
1−yi j

, whereξi is the energy of final state particlei (in the partonic

center-of-mass frame) over the total partonic energy,ξi = 2Ei/
√

ŝ, andyi j is the cosine of the angle
between particlei and j, yi j = cosθi j .

The crucial step in the FKS subtraction method is to realize that the phase-space can be parti-
tioned into regions that have at most one collinear and/or one soft divergence. This can be achieved
by multiplying Eq. (2.1) by so-calledS-functions

dσ real = ∑
i j -pairs

Si j |Mm+1|2dφm+1, (2.2)

where theS-functions have been defined in such a way that they vanish in all singular limits not
related to particlei becoming soft or particlesi and j collinear and that the sum over all pairs gives
one,∑i j -pairsSi j = 1. The precise definition of theS-functions used is not important. The result is

1The phase space measure includes an implicit factorξi . It has been assumed that this has already canceled one of
the 1

ξi
in the matrix element squared.
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that each term of the sum in Eq. (2.2) is finite over all of phasespace except if the energy of particle
i goes to zero or particlesi and j become collinear.

Because we know exactly where the infrared singularities are for a given partition, it is now
relatively straight-forward to regularize these divergences. This amounts to replacing each of the
terms in the sum of Eq. (2.2) by

(
1
ξi

)

ξcut

(
1

1−yi j

)

δO

ξi(1−yi j )Si j |Mm+1|2dφm+1, (2.3)

where we have used generalized plus distributions defined, with a smooth test functionf (x), as

∫
dx

(
1
x

)

xcut

f (x) =
∫

dx
f (x)− f (0)Θ(xcut −x)

x
. (2.4)

This leads to (maximally) three counter terms for a single(m+1)-particle event in a given phase-
space partition:

• the soft counter event:ξi = 0;

• the collinear counter event:yi j = 1;

• and the soft-collinear counter event:ξi = 0 andyi j = 1;

Of course, for numerical evaluation the explicitξi and (1− yi j ) in Eq. (2.3) should be canceled
analytically against the divergences in the matrix elementsquared. But this yields no problem,
because it is appreciated that in the collinear limit the real-emission matrix element squared is
equal to the Born times the Altarelli-Parisi splitting functions and in the soft limit by the color-
linked Borns times the eikonals. This defines the last two terms of Eq. (1.2).

In order not to change the NLO prediction, the “integrated subtraction terms” need to be added
to the virtual corrections,i.e., the third term in Eq. (1.2). The integral over the unresolved particle
can be performed analytically and is process independent; it results in terms proportional to the
(color-linked) Borns. For the explicit formulas of these integrated subtraction terms we refer to the
paper of Ref. [6].

2.2 Catani-Seymour dipole subtraction

The fundamental building blocks of the subtraction terms inthe dipole formalism [2, 3] are
dipole splitting functionsVi j ,k, which involve only three partons: emitteri, unresolved partonj,
spectatork. A dipole splitting function accounts for the collinear limit of j with i, and for part of
the soft limit of j in betweeni andk. The dipole factors, which constitute the subtraction terms,
are obtained by multiplication with reduced matrix elements, where partonsi, j andk are replaced
by recombined pseudo-partons̃i j , k̃. The full soft behavior is recovered after summing all dipole
factors.

Here, we use the notation introduced in Refs. [2,3]. Independent of whether we have initial or
final state particles we can write an arbitrary dipole in the form

Di j ,k ∼ m〈1, ... ˜i j , ..., k̃, ...,m+1|Tk ·Ti j

T2
i j

Vi j ,k|1, ... ˜i j , ..., k̃, ...,m+1〉m. (2.5)
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The amplitude factors〈. . . | (‘bra’) and| . . .〉 (‘ket’) on the right hand side are tensors in color space.
The helicities of the external particles in them are a priorifixed (but can be summed over for un-
polarized processes), while the helicities of the pseudo-partons are summed over after contraction
with the dipole splitting function.

In the limit of a large number of external particlesN, the number of subtraction terms needed
scales likeN3. Furthermore, due to different momentum mappings for each of the dipoles, the Born
matrix elements,i.e., the bra’s and ket’s in Eq. (2.5), have to be computed many times for a given
real-emission phase-space point. Therefore the calculation of the sum of all subtraction terms can
be more time consuming than the real emission itself. An clever trick was introduced by Nagy to
restrict the phase space of the dipoles and therefore the average number of subtraction terms per
real-emission phase-space point is greatly reduced [7].

2.2.1 Phase space restriction

The calculation of the subtraction terms is only necessary in the vicinity of a soft and/or
collinear limit. Away from these limits the amplitude is finite and there is in principal no need
to calculate the computationally heavy subtraction terms.The distinction between regions near to
a singularity from regions without need for a subtraction can be parameterized by the introduction
of a parameter usually labelledα with α ∈ [0,1], which was introduced in Ref. [7] for processes
involving partons only in the final state. The case with incoming hadrons,i.e., with partons in the
initial state, is described in Ref. [8].

Using the notation of Ref. [8], the contribution from the subtraction term to the differential
cross section can be written as

dσA
ab = ∑

{n+1}
dΓ(n+1)(pa, pb, p1, ..., pn +1)

1
S{n+1}

×
{

∑
pairs
i, j

∑
k6=i, j

Di j ,k(pa, pb, p1, ..., pn+1)F
(n)
J (pa, pb, p1, .., p̃i j , p̃k, .., pn+1)Θ(yi j ,k < α)

+ ∑
pairs
i, j

[
D

a
i j (pa, pb, p1, ..., pn+1)F

(n)
J (p̃a, pb, p1, .., p̃i j , .., pn+1)Θ(1−xi j ,a < α)

+(a↔ b)

]

+∑
i 6=k

[
D

ai
k (pa, pb, p1, ..., pn+1)F

(n)
J (p̃a, pb, p1, .., p̃k, .., pn+1)Θ(ui < α)+ (a↔ b)

]

+∑
i

[
D

ai,b(pa, pb, p1, ..., pn+1)F
(n)
J (p̃a, pb, p̃1, ..., p̃n+1)Θ(ṽi < α)+ (a↔ b)

]}
.

(2.6)

The functionsDi j ,k, Da
i j , D

ai
k andDai,b are the dipole terms for the various combinations for emitter

and spectator.∑{n+1} denotes the summation over all possible configurations for this (n+ 1)-
particle phase space which is labelled asdΓ(n+1) and the factorS{n+1} is the symmetry factor for
identical particles. In general, different numerical values forα can be chosen for the final-final,
finial-initial, initial-final and initial-initial dipoles.
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It has to be kept in mind that the integrated dipole factors, which are to be added to the virtual
n-parton contribution, will also depend onα . For the case of massless partons, theα-dependence
of the integrated terms is stated in [7, 8] while for massive partons results for most cases can be
found in [9–11].

3. Available packages

As explained in the introduction, there are three directions of automation. For each direction
there are packages available, which we will shortly describe here.

3.1 Automation of the subtraction terms

The codes describe here are for the automation of the bookkeeping and generation of the
subtraction terms only. In particular, they do not considerthe phase-space integration. The two
packages described here are using the Catani-Seymour dipole subtraction method and rely on Mad-
Graph [12] to generate the matrix elements.

MadDipole Given any real emission process, MadDipole [13] generates that process and all the
subtraction terms needed for it. Both the massless and the massive dipoles have been imple-
mented, including the phase-space restriction according to theα parameter. The integrated
subtraction terms are all implemented and will be availablesoon. It is available from any of
the MadGraph/MadEvent websites,e.g., http://madgraph.phys.ucl.ac.be/.

AutoDipole Using external Mathematica routines for the bookkeeping ofthe subtraction terms and
the generation of the color matrices of the subtraction terms, AutoDipole [14] uses the Mad-
Graph matrix elements for the generation of the Born and real-emission contributions. It has
the (integrated) dipoles for both the massless and the massive particles, but lacks theα de-
pendence to restrict the phase space of the dipoles. The codeis available for download at the
webpagehttp://www-zeuthen.desy.de/~moch/autodipole/index.html.

3.2 Full NLO

Compared to the previous subsection, the packages that willbe described here aim at the full
automation of NLO computations, excluding the finite part ofthe virtual corrections: they can do
the same as the codes in the previous section but on top of thatthe main addition is the automation
of the phase space generation and integration. There are three packages publicly available that have
the CS dipoles automated, Sherpa [15], TevJet [16] and Helac-Dipoles [17], and one package that
will be publicly available in the near future that has the FKSsubtraction implemented [6].

TevJet The TevJet package, written by Seymour and Tevlin inC++, has the massless CS sub-
traction terms automated. The user must provide the ingredients for a NLO computation,
i.e, the Born and real emission matrix elements, the color-linked and off-diagonal helicity
Borns, and the virtual corrections. The TevJet package takes care of the bookkeeping and
generating the subtraction terms (for massless particles only). General purpose 2-, 3- and
4-body phase spaces are available within the package to allow for a phase-space integra-
tion. The code can be downloaded from the webpagehttp://www.hep.man.ac.uk/

u/chris/tevjet/.
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Sherpa The first automation of the NLO subtraction terms was within the Sherpa package in
2007 [15]. It is based on the CS dipoles, including the massive contributions and theα-
parameter restriction. It has a phase-space generator specially designed to have an efficient
integration of the matrix elements minus subtraction terms. It has been proven to work
for complicated final states, in particular, together with the BlackHat collaboration [18] has
given predictions forW + 3 jets production at the Tevatron and LHC [19]. Recently, it has
become publicly available and can be downloaded from the Sherpa webpage,http://
www.sherpa-mc.de/.

Helac-Dipoles The third package that has an implementation of the CS dipolesubtraction terms
is the Helac-Dipoles package [17], based upon the Helac Monte Carlo generator [20]. Like
the Sherpa implementation it also has the massless and massive dipoles implemented as well
as theα-parameter restriction of the dipole phase space. Furthermore, it has the possibility
to have the subtraction terms for a given helicity configuration which allows for a Monte-
Carlo sum over helicities [17]. Also this code has been proven to work: e.g., it has given
predictions for the most impressivett +2 jets predictions at hadron colliders [21], using the
Helac-1Loop package [22] for the virtual corrections. The code can be downloaded from the
Helac webpage,http://helac-phegas.web.cern.ch/helac-phegas/.

MadFKS Contrary to the Sherpa, TevJet and the Helac-Dipoles packages, the MadFKS code [6]
has the FKS subtraction implemented within the MadGraph/MadEvent MC event generator
[12]. Also in this code both the massless and massive subtraction terms are implemented,
including the possible phase-space restriction for the subtraction terms. The possibility for
a Monte-Carlo sum over helicities is available as well. Furthermore, due to the nature of
the FKS subtraction, it is also suited for subtraction for colored BSM particles. The most
impressive result obtained with the code, is the calculation of 5 jets production at the LEP
collider at NLO [23]. For this calculation the finite part of the virtual corrections are provided
by the Rocket code [24], and have been checked using the BlackHat program [18]. The
MadFKS code is not yet publicly available.

3.3 NLO with possible link to Parton Shower

Although in principle linking NLO calculations to parton showers does not dependent on the
subtraction method used, in practice, the only method proven to work (in hadron collisions) is the
FKS subtraction.

Powheg Box The recently written package ‘Powheg Box’ [25] persuits exactly this: the automa-
tion of the linking between the ingredients of a NLO computations and the parton shower.
It is a framework where the user should put in the various contributions to any NLO com-
putation,i.e., the Born, the real emission, the virtual corrections, the color-linked Borns, the
off-diagonal helicity Borns and the Born phase space. From these ingredients the Powheg
Box builds a full NLO computation linked to a parton shower inan automated way. In
particular it has also the FKS subtraction implemented to deal with the soft and collinear sin-
gularities. The Powheg Box can be downloaded fromhttp://moby.mib.infn.it/
~nason/POWHEG/.

7



P
o
S
(
A
C
A
T
2
0
1
0
)
0
7
7

The automation of subtraction schemes for next-to-leadingorder calculations in QCD Rikkert Frederix

4. Summary

For NLO computation in QCD, there are various packages available that have the CS or FKS
subtraction methods automated. There are two public packages that focus on the automation of the
subtraction terms without having a specific phase-space generator: MadDipole and AutoDipole.
There are also four packages that aim in automating the full NLO computation: there are imple-
mentations of the CS dipoles in TevJet, Sherpa, and Helac-dipoles, and there is an implementation
of the FKS subtraction in the MadGraph/MadEvent framework,MadFKS. Furthermore there is
the Powheg Box package that focusses on the automation of thePowheg method of linking fixed
order NLO computations to parton showers. In its internal workings, there is an automated FKS
subtraction implemented.
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