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We briefly review a subtraction scheme for computing radiative corrections to QCD jet cross
sections that can be defined at any order in perturbation theory. Hereafter we discuss the compu-
tational methods used to evaluate analytically and numerically the integrated counterterms arising
from such a subtraction scheme. Basically these methods are the Mellin-Barnes (MB) represen-
tations technique together with the harmonic summation and the sector decomposition.
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1. Introduction

In quantum chromodynamics (QCD) and more generally in any quantum field theory with
massless particles one has to face among others the problem of infrared (IR) divergences when
computing higher orders corrections. According to the KLN (Kinoshita-Lee-Nauenberg) theorem
[1, 2] these IR singularities cancel out once one put together all the contributions at the same order
which are degenerate to a fixed final state (e.g. a parton state emitting one collinear and/or soft
gluon is degenerate to the state without this extra emission). This means that one has to compute the
sum of several contributions which are separately IR divergent leading to a final physical and finite
answer. To handle these IR singularities in a general way is non-trivial already at the next-to-leading
order (NLO) accuracy, where however several solutions are known [3, 4, 5, 6, 7, 8]. In recent years
a lot of effort has been devoted to the extension to the NNLO accuracy [9, 10, 11, 12, 13]. In
particular the subtraction scheme for QCD jet cross sections defined in [12, 13] is the one we are
interested in here. This scheme, initially defined for processes without colored particles in the
initial state, has been extended to an NNLO-compatible scheme with hadronic initial states [14].
Here we will consider only the case of processes initiated by colorless particles and we briefly
summarize it as follows.

In QCD the perturbative expansion for any production rate at NNLO can formally be written
as

σ = σLO +σ NLO +σ NNLO + . . . . (1.1)

Considering for example the e+e− → m jet process we have that the NNLO correction can be
written as

σ NNLO =

∫
m+2

dσ RR
m+2Jm+2 +

∫
m+1

dσRV
m+1Jm+1 +

∫
m

dσ VV
m Jm , (1.2)

where the terms represent the doubly-real, the real-virtual and the doubly-virtual contribution re-
spectively. Each of them is IR divergent while their sum remains finite. The restriction of the
phase space to define the physical quantity is realized by the jet functions Jn. The basic steps of
subtraction consist in regularizing all the integrals in Eq.(1.2) using dimensional regularization in
d = 4−2ε; then in reshuffling the singularities between the three terms by adding and subtracting
suitable counterterms in such a way that we end up with three contributions without IR singularities
i.e. finite in d = 4 dimensions. In this way Eq.(1.2) becomes

σ NNLO =

∫
m+2

dσ NNLO
m+2 +

∫
m+1

dσNNLO
m+1 +

∫
m

dσ NNLO
m . (1.3)

Here

dσNNLO
m+2 =

{
dσ RR

m+2Jm+2 −dσRR,A2
m+2 Jm −

[
dσ RR,A1

m+2 Jm+1 −dσRR,A12
m+2 Jm

]}
(1.4)

dσNNLO
m+1 =

[
dσ RV

m+1 +

∫
1

dσ RR,A1
m+2

]
Jm+1 −

[
dσRV,A1

m+1 +

(∫
1

dσ RR,A1
m+2

)A1
]

Jm (1.5)

and

dσNNLO
m =

{
dσ VV

m +

∫
2

[
dσ RR,A2

m+2 −dσ RR,A12
m+2

]
+

∫
1

[
dσ RV,A1

m+1 +

(∫
1

dσRR,A1
m+2

)A1
]}

Jm. (1.6)
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In Eq.(1.4) above dσRR,A1
m+2 and dσ RR,A2

m+2 regularize the singly- and doubly-unresolved limits of
dσ RR

m+2 respectively. The last counterterm in Eq.(1.4) which is dσ RR,A12
m+2 must regularize the sinlgy-

unresolved limits of dσRR,A2
m+2 and the doubly-unresolved limits of dσ RR,A1

m+2 . Finally in Eq.(1.5) we

have that the counterterms dσ RV,A1
m+2 and

(∫
1 dσRR,A1

m+2

)A1
regularize the singly-unresolved limits of

dσ RV
m+1 and

∫
1 dσ RR,A1

m+2 respectively.

2. Integrating the subtraction counterterms

In order to complete the definition of the subtraction scheme, one has to compute the integral
of the counterterms over the factorized one- and two-body phase spaces given in Eqs.(1.5,1.6).
These integrated counterterms have to be computed in d = 4−2ε dimensions and the result should
be given in the form of a Laurent expansion in ε . According to the KLN theorem, the ε poles of the
ε expansions of the integrated counterterms have to cancel those in the one-loop correction dσ RV

m

and the two-loop correction dσ VV
m giving a finite contribution for the real-virtual and doubly-real

cross sections. In this proceedings we will discuss the various techniques used to compute the
Laurent expansions in ε for the integrated counterterms.

According to the different unresolved limits there are different mappings of the external mo-
menta all of them preserve momentum conservation. The integrated singly-unresolved counterterm∫

1 dσ RR,A1
m+2 in Eq.(1.5) ( which is also the only one that is needed for a NLO computation) has

been computed in [15]. As it is shown in [16, 17] the singly-unresolved integrated counterterm∫
1[dσ RV,A1

m+1 +
(∫

1 dσRR,A1
m+2

)A1
] in Eq.(1.6) can be reduced to three different types of basic integrals:

these are the collinear, the soft and the soft-collinear integrals . Then the complete counterterm is
built with them and their non trivial convolutions (see e.g. Sections 2.1 and 2.2 of Ref.[17]). As
far as the doubly-unresolved counterterm

∫
2[dσRR,A2

m+2 −dσ RR,A12
m+2 ] in Eq.(1.6) is concerned we have

that the computation of the second one will be published in a forthcoming paper [18]. The compu-
tation of the first term is clearly feasible employing the same methods and is a work in progress.
For

∫
2 dσRR,A12

m+2 it turned out that it can be reduced to six different basic integrals divided in cou-
ples of collinear, soft and collinear-soft integrals. Analogously to the singly-unresolved case this
integrated counterterm it is built up with these basic integrals and their non-trivial convolutions.

To compute the basic integrals that are involved in the definitions of the various integrated
counterterms we studied different methods. A first fully numerical method for the computation of
the basic integrals is based on sector decomposition (see [19] and references therein). To extract the
poles in ε of these integrals a Mathematica package has been written implementing the sector
decomposition techniques [16, 20]. This program also produces FORTRAN codes directly used by
numerical integration programs. Another method that has been used to approach the computation
of these integrals exploited integration-by-parts (IBP) identities. With this method analytical re-
sults were obtained for some of the singly-unresolved integrals [16]. However it turned out that the
method based on Mellin-Barnes (MB) representations is in many cases more efficient and accurate
than the numerical evaluation via sector decomposition and made the analytic results much more
feasible than the techniques based on IBP [17]. Both the sector decomposition and the MB tech-
niques have been implemented independently to cross check all the results (also for those involved
in the doubly-unresolved counterterm) obtained for the Laurent expansions.
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To briefly show how the MB method works we want to describe a representative example
involved in the computation of the

∫
2 dσ RR,A12

m+2 counterterm. As anticipated a full treatment of it
will appear elsewhere [18]. We begin by considering the following basic collinear integral

Ik(x) = x
∫ 1

0
dαdv

α−1−ε(1−α)2d0−1v−ε(1− v)−ε

[α +(1−α)x]1+ε

(
α +(1−α)xv
2α +(1−α)x

)k

, (2.1)

where d0 ≥ 2 is an arbitrary parameter, k = −1,0,1,2 and x is a kinematic variable in [0,1]. Let
us now consider the particular case d0 = 2,k = 1. With this choice the integral in Eq.(2.1) is split
into two different contributions. Of them only the second one produces a pole in ε due to the factor
α−1−ε and we concentrate on it, which explicitly is given by

E(x) = x2
∫ 1

0
dα

α−1−ε(1−α)4

[α +(1−α)x]1+ε [2α +(1−α)x]
, (2.2)

where we have neglected an overall factor of Γ(2− ε)Γ(1− ε)/Γ(3− 2ε) coming from the inte-
gration over v. Now applying the well known basic MB formula

1
(a+b)ν =

1
Γ(ν)

∫ +i∞

−i∞

dz
2πi

a−ν−zbz Γ(ν + z)Γ(−z) (2.3)

two times in Eq.(2.2) we obtain

E(x) =
∫ +i∞

−i∞

dz1dz2

(2πi)2 2z2x−ε−z1−z2
Γ(−z1)Γ(−z2)Γ(3− ε − z)Γ(1+ ε + z1)Γ(1+ z2)Γ(−ε + z)

Γ(3−2ε)Γ(1+ ε)
,

(2.4)
where z = z1 + z2. According to the definition of the complex integration path in Eq.(2.3), one
has to choose the contours in such a way that the poles with a Γ(. . .+ z) dependence are to the
left of the contour and the poles with a Γ(. . .− z) dependence are to the right of it. Clearly if
one starts with contours that do not satisfy this requirement one has to deform them taking into
account the residua of the integrand while crossing every pole of it. This procedure is automatized
in the Mathematica package MB.m [21]. Once this is done this package enables one to easily
compute the Laurent expansion in ε where the coefficients are given as a list of MB integrals. The
numerical evaluation of the integrals is also implemented in MB.m by use of a simple command
line. Moreover according to the Cauchy theorem the integration over the complex contour can be
converted into sums over the residua inside the paths. If we follow these steps for our example
given in Eq.(2.4) we get

E(x) = −1
ε
+2log

( x
2

)
− log(2)

∞

∑
n=1

xn
(

n+2
2

)
−

∞

∑
m,n=1

( x
2

)m
xn
(

m+n+2
2

)
×

×
[
S1(m+n+2)−S1(m+n)+ log

(x
2

)]
+O(ε), (2.5)

where S1(n) = ∑n
i=1

1
i denotes the usual harmonic numbers. To obtain an analytic answer the

harmonic summation involved in Eq.(2.5) has to be performed. In this example, like in many
other cases encountered in the complete computation of the integrated counterterms, the harmonic
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summation is feasible and can be performed using the XSummer package [22, 23] in Form 3.0

[24]. Running a proper script we obtain for our example in Eq.(2.5) the following analytic answer:

E(x) = −1
ε
+ log(2)

(
1− 1

(1− x)3

)
− x2(3x2 −15x+14)

2(1− x)2(2− x)2

+
(x6 −9x5 +33x4 −78x3 +108x2 −72x+16)

(1− x)3(2− x)3 +O(ε). (2.6)

Note that the limit in x = 1 (corresponding to the collinear limit) is well defined because we have
that limx→1 E = −1/ε +53/6−16log2+O(ε). This concludes the discussion of our example to
show the method of MB representations.

As mentioned above, in the forthcoming paper about the counterterm
∫

2 dσ RR,A12
m+2 we will also

involve convolutions of the basic integrals, for example the collinear one in Eq.(2.1) with itself:

Ik ∗ Il(x,y) = y
∫ 1

0
dαdv

α−1−ε(1−α)2d0−3+2εv−ε(1− v)−ε

[α +(1−α)y]1+ε

(
α +(1−α)yv
2α +(1−α)y

)l

Ik((1−α)x).

(2.7)
For this particular integral following the steps described above we find

Ik ∗ Il(x,y) =
δk,−1δl,−1

4ε4 −
[

δk,−1δl,−1

2
ln(xy)+

(1−δk,−1)δl,−1

2(1+ k(1−δk,−1))
+

(1−δl,−1)δk,−1

2(1+ l(1−δl,−1))

]
1
ε3

+O(ε−2). (2.8)

Here the O(ε−2) contribution is already cumbersome and will not be given here.

3. Conclusions

In this proceedings after shortly reviewing the NNLO subtraction scheme developed in [12,
13, 14] we have discussed the various methods to compute the integrated counterterms focussing
on the MB representations method. Showing a simple example we described its usage discussing
some new results: the computation of the integrated counterterm

∫
2 dσ RR,A12

m+2 is finished and the
results will be reported in [18]. Our methods are clearly applicable to compute the final remaining
integrated counterterm

∫
2 dσ RR,A2

m+2 which is a work in progress. We found that the method based on
the MB representations can be used to obtain analytic results and in many cases is more efficient
even numerically than others like sector decomposition.

References

[1] T. Kinoshita. Mass singularities of Feynman amplitudes. J. Math. Phys., 3:650–677, 1962.

[2] T. D. Lee and M. Nauenberg. Degenerate Systems and Mass Singularities. Phys. Rev.,
133:B1549–B1562, 1964.

[3] S. Catani and M. H. Seymour. A general algorithm for calculating jet cross sections in NLO QCD.
Nucl. Phys., B485:291–419, 1997, hep-ph/9605323.

[4] S. Frixione, Z. Kunszt, and A. Signer. Three jet cross-sections to next-to-leading order. Nucl. Phys.,
B467:399–442, 1996, hep-ph/9512328.

5



P
o
S
(
A
C
A
T
2
0
1
0
)
0
8
0

IR subtraction schemes: integrating the counterterms at NNLO in QCD Paolo Bolzoni

[5] W. T. Giele and E. W. Nigel Glover. Higher order corrections to jet cross-sections in e+ e-
annihilation. Phys. Rev., D46:1980–2010, 1992.

[6] W. T. Giele, E. W. Nigel Glover, and David A. Kosower. Higher order corrections to jet cross-sections
in hadron colliders. Nucl. Phys., B403:633–670, 1993, hep-ph/9302225.

[7] Zoltan Nagy and Zoltan Trocsanyi. Calculation of QCD jet cross sections at next-to-leading order.
Nucl. Phys., B486:189–226, 1997, hep-ph/9610498.

[8] S. Frixione. A General approach to jet cross-sections in QCD. Nucl. Phys., B507:295–314, 1997,
hep-ph/9706545.

[9] Stefan Weinzierl. Subtraction terms at NNLO. JHEP, 03:062, 2003, hep-ph/0302180.

[10] Stefano Frixione and Massimiliano Grazzini. Subtraction at NNLO. JHEP, 06:010, 2005,
hep-ph/0411399.

[11] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. Nigel Glover. Antenna Subtraction at NNLO.
JHEP, 09:056, 2005, hep-ph/0505111.

[12] Gabor Somogyi, Zoltan Trocsanyi, and Vittorio Del Duca. A subtraction scheme for computing QCD
jet cross sections at NNLO: regularization of doubly-real emissions. JHEP, 01:070, 2007,
hep-ph/0609042.

[13] Gabor Somogyi and Zoltan Trocsanyi. A subtraction scheme for computing QCD jet cross sections at
NNLO: regularization of real-virtual emission. JHEP, 01:052, 2007, hep-ph/0609043.

[14] Gabor Somogyi. Subtraction with hadronic initial states: an NNLO- compatible scheme. JHEP,
05:016, 2009, 0903.1218.

[15] Gabor Somogyi and Zoltan Trocsanyi. A new subtraction scheme for computing QCD jet cross
sections at next-to-leading order accuracy. 2006, hep-ph/0609041.

[16] Ugo Aglietti, Vittorio Del Duca, Claude Duhr, Gabor Somogyi, and Zoltan Trocsanyi. Analytic
integration of real-virtual counterterms in NNLO jet cross sections I. JHEP, 09:107, 2008, 0807.0514.

[17] Paolo Bolzoni, Sven-Olaf Moch, Gabor Somogyi, and Zoltan Trocsanyi. Analytic integration of
real-virtual counterterms in NNLO jet cross sections II. JHEP, 08:079, 2009, 0905.4390.

[18] Paolo Bolzoni, Gabor Somogyi, and Zoltan Trocsanyi. (in preparation).

[19] Gudrun Heinrich. Sector Decomposition. Int. J. Mod. Phys., A23:1457–1486, 2008, 0803.4177.

[20] Gabor Somogyi and Zoltan Trocsanyi. A subtraction scheme for computing QCD jet cross sections at
NNLO: integrating the subtraction terms I. JHEP, 08:042, 2008, 0807.0509.

[21] M. Czakon. Automatized analytic continuation of Mellin-Barnes integrals. Comput. Phys. Commun.,
175:559–571, 2006, hep-ph/0511200.

[22] Sven Moch, Peter Uwer, and Stefan Weinzierl. Nested sums, expansion of transcendental functions
and multi-scale multi-loop integrals. J. Math. Phys., 43:3363–3386, 2002, hep-ph/0110083.

[23] S. Moch and P. Uwer. XSummer: Transcendental functions and symbolic summation in Form.
Comput. Phys. Commun., 174:759–770, 2006, math-ph/0508008.

[24] J. A. M. Vermaseren. New features of FORM. 2000, math-ph/0010025.

6


