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A test implementation shows that this method produces less number of decomposed sectors than
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1. Introduction

In the calculation of Feynman amplitude with massless particles, one has to regulate infrared
divergences (IR), which cancel out among loop corrections and real emission processes. In pertur-
bative QCD, this divergences are regulated by D-dimensional method. Divergent part is expressed
as poles in terms of ε = (4−D)/2. Sector decomposition method developed in Refs. [1, 2, 3, 4]
are widely used for separating IR divergences.

As a simple example of separation of infrared divergences, let us consider the following one-
dimensional integral for ε < 0 with a regular function f such that f (0) is a non-zero finite value:

I =
∫ 1

0
dx x−1−ε f (x)

=
∫ 1

0
dx x−1−ε f (0)+

∫ 1

0
dx x−1−ε ( f (x)− f (0))

= − f (0)
ε

+
∫ 1

0
dx

(
x−ε f ′(0)+

1
2

x1−ε f ′′(0)+ ...

)
.

(1.1)

When ε = 0, the factor x−1−ε produces a logarithmic divergence by the integration around x ∼ 0.
While for ε < 0, the divergence is regularized and converted to a pole of ε . The coefficient of the
pole is f (0), which is the first term of the Taylor expansion of f (x) around x = 0. The rest of
the integration becomes finite for ε → 0. This example shows that, when the singular part of the
integrand is factored out, one can separate divergent part as poles in terms of ε .

For the general loop integrations, it will also be possible to separate IR divergence, if the
singular part is factored out. Although the factorization of a multi-variate polynomial is not a trivial
problem, it is solved by the method of sector decomposition. This method shows that when the
integration domain is properly decomposed into sectors and selecting good variables in each sector,
the divergent part is factored out. This method provides at the same time a practical procedure to
find such sectors and variables. Then we can obtain the coefficients of the poles of ε and the finite
part as a Laurent series in terms of ε .

Usual sector decomposition method divides the integration domain and find appropriate new
variables by an iterative way. It was found that a simple iterative method may fall into an infinite
loop and strategies are proposed to avoid this problem by Refs. [5, 6]. Other strategies have been
proposed and a practical system has been constructed by Refs. [7, 8, 9]. Since one has to calculate
integration for each sector, a method is preferable when it produces less number of sectors.

We propose another method based on the classification of asymptotic behavior of polynomials
around the origin. The problem is converted to one for convex bodies in Euclidean space and
solved with algorithms developed in computational geometry. These are deterministic algorithms
without iterations. This talk presents, based on Ref. [10], our basic ideas and show the results of
this method.

2. Sector decomposition

The procedure of sector decomposition consists of the following steps:

1. Start from Feynman parameter representation of a loop integration.
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2. Primary sector decomposition:

The δ -function is integrated and the integration domain is decomposed such that the singu-
larities appear in the specific position in each sector.

3. Factorization of the integrand:

The sectors obtained in the previous step are decomposed into finer ones. New variables are
found such that singular parts are factored out.

4. Separation of poles in terms of ε:

The regular part of the integrand is expanded in terms of ε . The coefficients of Laurent series
in terms of ε are obtained.

5. Integration of coefficients:

The coefficients are now free from IR divergences. However, they will still include multi-
dimensional integration. They will be integrated out by analytic or numerical methods.

a
b

c
d

a b

c d

(a) (b)

Figure 1: An example of primary sector decomposition in 3-dimensional case. Integration plane is divided
into 3 sectors and sub-domain abcd in (a) is mapped to a square shown by (b).

Feynman parameter representation of a loop integration includes δ -function which defines
the (N − 1)-dimensional hyperplane. The primary sector decomposition integrates over one of
integration variables and decompose the integration domain into N sectors. An example is shown
by Fig. 1 for the 3-dimensional case. By the decomposition of the integration domain and selecting
new variables, sectors become (N−1)-dimensional cubes. The original boundary of the integration
domain is mapped to a part of the new boundary specified by conditions that some of new variables
are 0. The resulting expression of the integration for l-th sector becomes:

Gl =
∫ 1

0
dN−1t tν−I U γ

l (t)F β
l (t), tν−I =

N−1

∏
j=0

tν j−1
j , (2.1)

where Fl(t) and Ul(t) are polynomials of variables t. Parameter ν j is integer determined by the
power of propagators, and I is an (N −1)-dimensional vector whose elements are all 1. Powers β
and γ are functions of ε . If Fl(t) or Ul(t) become 0 at the boundary, and corresponding power β
or γ becomes negative integer for ε = 0, the integration diverges.
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3. Geometric method

We want to express polynomial Fl(t) in the form:

Fl(t(z)) = Cazba (1+Ha(z)) , Ha(0) = 0, zba = ∏
j

z(ba) j
j , (3.1)

where z is a set of new variable, Ha(z) is a polynomial of z, ba is an integer vector and Ca is
a constant. In order to seek such an expression, we consider the following example taken from
one-loop box integration:

Fl(t) = −s23t2t3 − s12t1 − s4t1t3 = t2t3

(
−s23 − s12

t1
t2t3

− s4
t1
t2

)
. (3.2)

If terms t1/t2t3 and t1/t2 → 0 when t2t3 → 0, the asymptotic behavior of Fl is determined by the
term −s23t2t3. The singular behavior of the integrand around the origin is determined by this term.
This condition is satisfied by taking new variables z defined by t2 = z2, t3 = z3, t1 = z1z2z3. With the
range of z j being limited to (0,1), a sub-domain of the integration domain in t-space is obtained.
This example shows that a term of a polynomial in some sub-domain will determine asymptotic
behavior of the polynomial around the origin. We call this term dominant in this sub-domain.

In order to see dominant terms more closely around the origin, let us change variable to y j =
− log t j or t j = e−y j . Monomial tc = tc1

1 tc2
2 · · · tcN−1

N−1 becomes e−(c,y), where (c,y) = ∑c jy j is the inner
product defined in (N −1)-dimensional Euclidean space. This shows that a monomial corresponds
one-to-one to a integer vector c in this Euclidean space (let us call this power vector). Let ZFl is
the set of power vectors corresponding to the terms included in a polynomial Fl . Polynomial Fl

is expressed by:

Fl(t) = ∑
c∈ZFl

actc = ∑
c∈ZFl

ace−(c,y). (3.3)

In order to find the dominant term, let us consider a limit λ →+∞ for y j = λu j →+∞ with a fixed
non-negative real vector u. A term tb = e−(b,y) is dominant in this limit when (b,y) ≤ (c,y) for
all c ∈ ZFl . Conversely, let us fix vector b and vary u or y. The term with this power vector b is
dominant in the sub-domain defined by:

∆Fl
b := {y ∈ RN−1

≥0 |(c−b,y) > 0,∀c ∈ ZFl}. (3.4)

This sub-domain forms a convex polyhedral cone. The polynomial Fl is expressed as the follow-
ing:

Fl(t(y)) = ∑
b∈ZFl

θ(y ∈ ∆Fl
b )e−(b,y)

[
ab + ∑

c∈ZFl−{b}
ace−(c−b,y)

]
. (3.5)

For a vector y ∈ ∆Fl
b , factor e−(c−b,y) → 0 for |y| → ∞, since (c− b,y) > 0 holds for all c. This

implies that the term tb is dominant in the sub-domain ∆Fl
b . Thus, asymptotic behavior of Fl is

classified in terms of these sub-domains {∆Fl
b }.

When this method is applied also to Ul , the singular parts are factored out from the integration.
Let us return to our example Eq. (3.2) of one-loop box. In this case Ul is 1 + t1 + t2 + t3 and this
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Figure 2: An example of geometric sector decomposition

expression shows that Ul does not produce IR singularity (Ul → 1 for ti → 0). With a simple
calculation, we obtain from Eq. (3.2):

tb0 = t1, tb1 = t2t3, tb2 = t1t3,

ZFl = {b0 = (1,0,0), b1 = (0,1,1), b2 = (1,0,1)},
∆b0 = {x1(1,1,0)+ x2(1,0,1)+ x3(0,1,0)+ x4(0,0,1) | x1,x2,x3,x4 ≥ 0},
∆b1 = {x1(1,0,0)+ x2(1,1,0)+ x3(1,0,1) | x1,x2,x3 ≥ 0},
∆b2 = /0.

(3.6)

The sub-domains are shown in Fig. 2. The fact that the last sub-domain is empty means that term
t1t3 never becomes dominant. The second domain is a triangular cone for which variables x take
simple range of values. However, the first sub-domain includes four parameters in 3-dimensional
space. When this sub-domain is divided further into two triangular cones, this redundancy disap-
pears:

∆b0 = ∆(1)
b0

∪∆(2)
b0

,

∆(1)
b0

= {x1(1,1,0)+ x2(1,0,1)+ x4(0,0,1) | x1,x2,x4 ≥ 0},

∆(2)
b0

= {x1(1,1,0)+ x3(0,1,0)+ x4(0,0,1) | x1,x3,x4 ≥ 0}.

Now we subsequently change variable from y j to xi and then to zi = e−xi . The integration domain
for z becomes 3-dimensional unit cube. Finally we obtain a sector decomposition as the following:

sector variables ZFl

∆(1)
b0

t1 = z1z2, t2 = z1, t3 = z2z4 z1z2(−s12 − s23z4 − s4z2z4)
∆(2)

b0
t1 = z1, t2 = z1z3, t3 = z4 z1(−s12 − s23z3z4 − s4z4)

∆b1 t1 = z1z2z3, t2 = z2, t3 = z3 z2z3(−s12z1 − s23 − s4z1z3)

It is easy to calculate Jacobian, which is found to be a monomial of z.
For the general case, the decomposition of the integration domain in accordance with the clas-

sification of the asymptotic behavior, corresponding to Eqs. (3.4) and (3.6), becomes a problem in
Euclidean geometry. It is not so hard to solve this when one uses convex hull algorithms developed
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in computational geometry. This decomposition is uniquely determined once a polynomial is given.
It is independent of the choice of an algorithm. In order to obtain final representation of sector de-
composition, corresponding to the previous table, it is necessary to triangulate convex polyhedral
cones. This is performed with triangulation algorithms. The triangulation of convex polyhedral
cones is not determined uniquely and the number of sectors will depend on the algorithm.

4. Test implementation and conclusion

We have made a test implementation of this method. Our convex hull algorithm is a modified
one for convex polyhedral cones based on the algorithm described in Ref. [11] for polytopes.
For triangulation of convex polyhedral cones, we have developed our own algorithm. The input
to our program is given by the package described in Ref. [12] and output is passed to the same
package for the separation of poles and integrations of coefficients. We have checked our program
by comparison with another package qhull (Ref. [13]) for the convex hull algorithm, calculating
integration volume for the triangulation, and comparison of integrated values of several diagrams
with references. The number of decomposed sectors are shown by Table 1.

Table 1: Comparison of number of sectors among different methods. Numbers in column “H” are cited
from Ref. [4]. Columns “A”, “B”, “C”, “S” and “X” indicate corresponding strategy described in [5] and [7].
As shown in [7], “F” means that the sector decomposition fails and “M” means that the memory overflow
happened during the sector decomposition on a 8Gb machine. The numbers with “*” are given by [14].
“This method” indicates the number of sectors obtained by our method. “Exponential S.D.” indicates the
number of sectors before the triangulation.

Diagram A B C S X H This Exponential
method S.D.

Bubble 2 2 2 2* 2 2 2
Triangle 3 3 3 3* 3 3 3
Box 12 12 12 12 12 12 8
Tbubble 58 48 48 48* 48 48 36
Double box, p2

i = 0 775 586 586 362 293 282 266 106
Double box, p2

4 6= 0 543* 245* 245* 230* 192* 197 186 100
Double box, p2

i = 0 1138 698 698 441* 395 360 120
nonplanar

D420 8898 564 564 180 F 168 100
3 loop vertex (A8) 4617* 1196* 1196* 871* 750* 684 684 240
Triple box M 114256 114256 22657 10155 6568 856

We have proposed a factorization algorithm in sector decomposition. Our method is based
on a classification of asymptotic behavior of polynomials. The problem is converted to one for
convex bodies in Euclidean space. In order to find sector decomposition for a given integrand,
we employed algorithms developed in computational geometry. This method is deterministic and
never falls into an infinite loop. A test implementation shows that the number of decomposed
sectors is less than iterated sector decomposition combined with several strategies.
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