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1. Introduction

Perturbative calculations in lattice gauge theories (foevaew, see [1]) are of interest from
several points of view.

Firstly, they are needed to determine thexr parameter of QCD in the lattice regularization
and its relation to the respective valligcp in the continuum theory.

Secondly, every lattice action defines a specific regultwizascheme, and thus one needs
a complete set of renormalization computations in ordettterresults obtained in Monte Carlo
simulations be understood properly. Perturbation theprgquired to establish the connection of
the matrix elements computed on a lattice with their valumethe continuum theory [2], [3]. In
this connection, it should be emphasized that the use ofaneperturbative renormalization con-
stants gives rise to large systematic uncertainties iic¢atialculations of the momenta of hadronic
structure functions [3] and respective two-loop compotatiare needed.

Thirdly, perturbative calculations provide the only pad#ty for an analytical control over the
continuum limit in QCD. One can also mention anomalies, pafaenormalizability, Symanzik
improvement program and other fields of application ofdatiperturbation theory.

Here we consider one- and two-loop diagrams with Wilsos: (1) fermions at zero external
momenta [4]. We outline the Burgio-Caracciolo-Peliss€éB&€P) method [5] of calculations of
one-loop integrals and describe the respective compugerigdm [6]. This algorithm allows to
compute the fermionic propagator in the coordinate reptatien and, therefore, to extend the
Lischer-Weisz (LW) method [7] to the fermionic case; sucteesion is presented in Section 4.

1.1 Notation

We use the following designations:stands for the set;, np, N3, ny; X = (X1, X2, X3,Xa), Where
Xy are integer-valued coordinates of an infinite four-dimenai latticeA = {x: x, € Z}; we also
need the latticé\’ = A\ {0} with removed site x=(0,0,0,0);

IX| = [Xa| + [X2| + [X3| + [Xal, (X" = X] 4 X3+ X3+ X3. (1.1)

Then we give the expressions for the denominators of bosorddermionic propagators,

Ag(K) = 4+ pg—cogki) — cogks) — cogks) — cogka); (1.2)
4

Ar(k) = 10—4 3 cosky)+ 5 cosky)cosky) + K3
u=1 1<u<v<4

whereLr is the fictitious mass for infrared regularization. We alseDr = 2 Ar andDg =2 Ag
normalized in the standard wapgr) k) =~ 1/k? ask — ). These propagators in the coordinate
representation are defined as follows:

dk ek
G X :/ —_—, a.3)
o)) = Jo, (20 Doy (0
whereBZ is the Brillouin zoneBZ = {p: — gg pu < I—aT}
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2. The Burgio—Caracciolo—Pelissetto method

2.1 Bosonic Intefgrals

The integrals under study are defined as follogy; fi) = lims_oFs(q; i), where

' dk cogky)™ cogky)"™ cogksz)™ cos(k4)”4'

Bz Angé

Fa(op i) = (2.1)

Hered is an infinitesimal parameter for an intermediate reguddian [5]. This parameter makes
it possible to derivkthe recursion relations of the form

F(g....nu,...) =F(q;....,ny —2,...) — (2.2)
(ny=YF@@-1;..,ny—1,...) (ny—2F(@Q—1;....,ny—3,...)
B q—1+90 + q-1+96 (N =2).

With these relations and similar relations fgr < 1 one can express the integrals (2.1) in terms of

the quantities
dk 1
Gs(q, 1) = / e S 2.3
5(q7 l"lR) BZ (27.[)4 (AB)CH_(S ( )
Up to terms of the orde®’(u3) and&'(J), this expression has the form
0

q

Faf)= Y Ay (8.MGs(rn0)+ Y Ay (1B A)Gs(r, ud), (2.4)
r=g—ni—nNx—nNz—ng r=1

whereA&F)(c‘S,ﬁ) have a pole singularity i, andA&f)(uF%,ﬁ) are polynomials iry3. As for the

function G;(r, u3), the domains > 0 andr < 0 should be considered separately.rAt 0, & can

be safely set to zero and the functi@g(r, u3) should be expanded in powers;quz

1 2y k2l (K)
Go(r, HB) = s | — br_zlc+ S ~—222| £ 3(r) + O(R)+6(3),  (2.5)
V= e | T2, R
whereb, are the coefficients of the asymptotic expansion-at of the functiorf
1 by b
4 ~ 1 2
exp(—42)l5(2) ~ 22 <1+7+?+...>, (2.6)

lc = In(u3) +C, andC is the Euler-Mascheroni constant. A& 0, g can be safely set to zero and
the functionGg(r,0) should be expanded i as follows:Gg(r,0) = B(r) +J(r)d + 0(5?).
The functions](q), in their turn, obey recursion relations of the type

Co(a)J(a) +c1()I(q+1) +c2(9)I(a+2) +c3(a)I(q+3) +ca(a)I(q+4) =0 2.7)

derived in [5]; the explicit expressions for the coefficent(q) can be found in [6]. Thus we
expressl(g) atq> 4 and ag < 0 in terms 0fJ(0),J(1),J(2) andJ(3). It should be noted thak(0)
does not appear in ultimate expressions for the integraly.(Zhen one can introduce the values

J(1) 13 1
Zo="~ Fo=4mJ(2 Z1=32)(3) - 8)(2) + — + = 2.8
0 2 0 ()7 1 () ()+6Tl’2+47 (2.8)
which are equal to [1¥ ~ 0.1549333902,3; ~ 0.10778131354~ ~ 4.369225233874758.
1Using integration by parts
219(2) is the Infeld function.
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2.2 Fermion Integrals

In the fermionic case, we consider the quantiti€p, q; i) = lims_oFs(p,q; i), where

4 . , . \
Fs(papfi) = lim [ 5K €08" (k) 0S¥ (ko) COST (k) cOS (ka)

29
-0/ (2m)* AgAIF:’+5 (2.:9)

With the recursion relations similar to (2.2) these intégeae expressed in terms of the functions

d*k 1 : :
Gs(p,q) = /Ww, which can be represented in the form

Gs(p,q) = D(p,q; H3) +B(p,a) + & (L(p,q; 43) +I(p,q)) + O(8%),  p<0; (2.10)
Gs(p,d) = D(p,q; &) +I(p.a) +O(8),  p>0.

The divergent part®(p,q; u3) andL(p,q; 43) in the domain of interest can be determined by a
straightforward procedure [5], whereas the functi&igp,q) andJ(p,q) obey recursion relations
of several types. These relations and the procedure ofdkeivation were described in [5]; their
explicit form (very cumbersome) is given in [6]. With the uskthese relations, the functions
F(p,q; A) can be represented (see [1], [5]) as linear combinationseo€onstantsy, Zo, Z; and

Yo:J(24’O) —%, Y, = %8—%20—2—14J( 1,2) + %ZJ(01)+1£23(10) (2.11)

Yoo 2o 3(-12)+ 2 3(0) g I(L-2) 5 (1) -
—%J(1,0)+4J(1,1) 4183(2 —2)+ 265J(2,—1)—4J(2,0),

Y3__38f1n2_|:012213n2+é520 418 (= 13)+%2J(01) 418 (0.2) + 75 I(L.2);
Y4:J(12’O), Ys=J(1,-1), Ye=2J(1,-2), Y7:J(2’2_1), (2.12)
Yo =J(2,-2), Ygz‘](g’z_z), Yio=3(3,-3),  Yi1=2)(3,—4).

The respective codes can be found on the web page of the IT&EPeL.group
http://ww. | attice.itep.ru/ ~pbaivid/lattpt/. The results stored there are as
follows: (i) the program for a computation Bf(p,q; i) at 0< p,q < 9 andn; + np + Nz + Ny < 25;
(i) the values of the functiond(p,q) andB(p,q) at—26 < p <0, —56—2p < q< 34 and the
values ofJ(p,g) at 1< p<9, —28<(q< 33— p; and (iii) The explicit expressions fdt(p,q; i)
at some particular values pfandqg and alln; < 6.

3. The Luscher—Weisz method

To outline the LW method [7] of computation of two-loop diagrs in the coordinate representa-
tion, we consider the diagram in Fig.1, given by the expogssi
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As(p) = 3 e 'PGg(x). (3.1)
XeN
—— In the bosonic case, Liuscher and Weisz calculated
X 0 Ag(0) and its asymptotic expansion whpr- 0; they
> used the following representation:
; As(0) = G3(0)+ Y G(X) (3.2)
T xeN
+ Y (GEM-GL)
xe{In}
Figure 1
+ (GR0) —G().
xe{N\In}

where.Zy = {X: [X1]|+ [X2| 4 |[X3| + [Xa| < N}, andGas(Xx) is an asymptotic approximation &f(X)
whenx — oo,

Gas(X) . <2[Xﬂf_]£xz]2> + <4o [X4]2+16 X g X, 1 >+ (3.3)

] [ LS A S S

In the domain%y;, the propagatoGg(x) can computed by the recursion formulas

4 ~
Golx-+ ) = Gal(x—A) + 22— 5 (Go(x) ~ Galx—A)) (3.9)
<Zv:1XV) A=1

which allow to express it in terms @g(0,0,0,0) = Zp andGg(1,1,0,0) = —1/4+Z; + Zy. The
domain{A\.%y } is chosen so that the propagator is fitted by its asymptopicession (3.3) with a
sufficient precision making it possible to neglect the ttsnin in the formula (3.2). Then the first
sum can be calculated exactly using the summation formeesedl in [7] and the second sum can
be expressed in terms @f andZ, by employing the relations (3.4).

4. Two-loop fermionic integrals.

In the fermionic case, calculations are performed by theesaracedure, howevewe have
no recursion relations similar to (3.4). The fermionic propagator irrepresentation

d* cogkyxp) cog(koxp) cog kaxz) cogKyxs)

G,:(xl,x2,x3,x4):/(2n)4 A (4.2)
is expressed in terms of the quantities
F(pam ) - | i ST OR) g
by making use of the relations
n-1 nME( 1)k+1 n-2k-2
cognx) = 2" *cos'x + = Z CK . ,(2cox) . (4.3)
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To employ the LW method outlined above, we compile a tableaties ofGg (x) over the domain
X1 > X2 > X3 > X4 > 0, |X| < 48 and derive an asymptotic approximatiorGf(x) at |x| — co up to

the terms of the order/1x%]*. To treat integrals with nontrivial numerators, we shouaompile
the tables of the values

g iPx_ 1+ (4 - 5 cogky)
dp ( Z ' )

[ dp (e -1 -
o= |y g o0~ e Da[F]m) - 49

Each of these tables involves 14147 entries, each entryirsearlcombination of the constants
1
Fo, Zo0,2Z1, Yo, Y1, ... Y11, 2ne’
Fortunately, they can be conveniently treated with FORM [8]
The precision of 20 significant digits in determination o tonstant¥, = Yi [1], [5] is not

sufficient for computation oBg (x) at x| > 6. Using the procedure proposed in [7] for calculation
of Zp andZ;, we obtain

and 1 with rational coefficients; from 5 to 20 MB per table ires

Y2 = 0.085390363595320679135167028885334120581941471268432
Y5 = 0.469363310026996144753475397057518034820462958835A31
Ys = 3.3945690736771300058600868970237449645368527231C83335
Y7 = 0.0518801950390113663649022876647157994096801275024915
Ys = 0.238747737563414785202336139303869704452801949834(179
Yo = 0.03447644143803223145396188144243193600121277128Z157
Y10 = 0.1320272712278129308531473109819659697119714479%8394
Y11 = 0.751671990302956822535431485907781109910112771933448

At |x| > 48, Gg (x) is approximated by the function

(@) — L, (80X 4T LSy XY _ 40
Gy (X)_[x2]+< R ) <640[] 768[ a0 +2os[ 2[5 [X2]3>+..., (4.5)

To provide an example, let us consider the following twogldermionic integrals:

- / d*  dq i k2a2 (4.6)
1 Bz (2m)* (2m)* &, Dg(k)Dg(q)Dsg(r)

BBF _ / d*k dq i kzqu

1 Bz ( 27'[ (2m) 4 (9)Dg(r)

and similar quantities with other combinations of bosomd &rmionic propagators. We can also
consider

d* d%q 2 kza22
BeF _/ Q4 Z Ty (4.7)
Bz (2m)* (2m)* &, Dg(k)Dg(q)Dr(r)
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etc. The results of the computations are as follows:

BBE _ 0.0423063681) Q1" = 0.0200797023) (4.8)
QEEF = 0.0245552583) QL =0.009698961)
Q5FF =0.011732241) QiFF =0.005760183)
Q5BE = 0.0546239781€L) Q5°F = 0.02659175158)
BFF — 0.01303732371) 5FF = 0.006494568(3)

5. Summary and Outlook

The BCP algorithm has been realized on a computer. The basiidnic integralsG(p,q)
are found over a sufficiently large domain of valuepa@indg. This allows (i) to express one-loop
intergals involving fermionic denominators in terms of tmnstants~, Zy, Z; andYy + Y1 and (ii)
to computeGrg (X) at x| < 96.

The LW method is extended to the case of fermions; asympbai@mvior of the fermionic
propagator afx| — o is found. TherewithGg (x) is expressed dk| < 48 in terms of the constants
Y4 = Y11, the values of which are computed to a precision of 54 sigmticigits. This is really
needed for calculation of two-loop integrals. A new featof&ORM - a possibility to work with
database-like structures - proved to be useful for summatier the domainx| < 48. As an
illustration, several two-loop fermionic integrals arakated at zero external momentum.

Operations with a table of precise values of the functi@gge)(x) Kgr)(x) and Lg(r)(X)
allow to compute one-loop and two-loop diagrams of the pgapar type at nonvanishing external
momentum. The work is in progress!
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