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1. Introduction

Perturbative calculations in lattice gauge theories (for areview, see [1]) are of interest from
several points of view.

Firstly, they are needed to determine theΛLAT parameter of QCD in the lattice regularization
and its relation to the respective valueΛQCD in the continuum theory.

Secondly, every lattice action defines a specific regularization scheme, and thus one needs
a complete set of renormalization computations in order forthe results obtained in Monte Carlo
simulations be understood properly. Perturbation theory is required to establish the connection of
the matrix elements computed on a lattice with their values in the continuum theory [2], [3]. In
this connection, it should be emphasized that the use of one-loop perturbative renormalization con-
stants gives rise to large systematic uncertainties in lattice calculations of the momenta of hadronic
structure functions [3] and respective two-loop computations are needed.

Thirdly, perturbative calculations provide the only possibility for an analytical control over the
continuum limit in QCD. One can also mention anomalies, proof of renormalizability, Symanzik
improvement program and other fields of application of lattice perturbation theory.

Here we consider one- and two-loop diagrams with Wilson (r = 1) fermions at zero external
momenta [4]. We outline the Burgio-Caracciolo-Pelissetto(BCP) method [5] of calculations of
one-loop integrals and describe the respective computer algorithm [6]. This algorithm allows to
compute the fermionic propagator in the coordinate representation and, therefore, to extend the
Lüscher-Weisz (LW) method [7] to the fermionic case; such extension is presented in Section 4.

1.1 Notation

We use the following designations: ˜n stands for the setn1,n2,n3,n4; x = (x1,x2,x3,x4), where
xµ are integer-valued coordinates of an infinite four-dimensional latticeΛ = {x : xµ ∈ ZZ}; we also
need the latticeΛ′ = Λ\{0} with removed site x=(0,0,0,0);

|x| = |x1|+ |x2|+ |x3|+ |x4|, [xn] = xn
1 + xn

2+ xn
3 + xn

4. (1.1)

Then we give the expressions for the denominators of bosonicand fermionic propagators,

∆B(k) = 4+ µ2
R −cos(k1)−cos(k2)−cos(k3)−cos(k4); (1.2)

∆F(k) = 10−4
4

∑
µ=1

cos(kµ)+ ∑
1≤µ<ν≤4

cos(kµ)cos(kν)+ µ2
R

whereµR is the fictitious mass for infrared regularization. We also useDF = 2 ∆F andDB = 2 ∆B

normalized in the standard way (DB(F)(k) ≃ 1/k2 ask → ∞). These propagators in the coordinate
representation are defined as follows:

GB(F)(x) =
∫

BZ

dk
(2π4)

e−ikx

DB(F)(k)
, (1.3)

whereBZ is the Brillouin zone,BZ =
{

p : −
π
a
≤ pµ ≤

π
a

}

.
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2. The Burgio–Caracciolo–Pelissetto method

2.1 Bosonic Intefgrals

The integrals under study are defined as follows:F(q; ñ) = limδ→0 Fδ (q; ñ), where

Fδ (q; ñ) =
∫

BZ
dk

cos(k1)
n1 cos(k2)

n2 cos(k3)
n3 cos(k4)

n4

∆q+δ
B

. (2.1)

Hereδ is an infinitesimal parameter for an intermediate regularization [5]. This parameter makes
it possible to derive1 the recursion relations of the form

F(q; ...,nµ , ...) = F(q; ...,nµ −2, ...) − (2.2)

−
(nµ −1)F(q−1;...,nµ −1, ...)

q−1+ δ
+

(nµ −2)F(q−1;...,nµ −3, ...)

q−1+ δ
(nµ ≥ 2).

With these relations and similar relations fornµ ≤ 1 one can express the integrals (2.1) in terms of
the quantities

Gδ (q,µ2
R) =

∫

BZ

dk
(2π)4

1

(∆B)q+δ . (2.3)

Up to terms of the orderO(µ2
R) andO(δ ), this expression has the form

Fδ (q, ñ) =
0

∑
r=q−n1−n2−n3−n4

A(−)
qr (δ , ñ)Gδ (r,0)+

q

∑
r=1

A(+)
qr (µ2

R, ñ)Gδ (r,µ2
R), (2.4)

whereA(−)
qr (δ , ñ) have a pole singularity inδ , andA(+)

qr (µ2
R, ñ) are polynomials inµ2

R. As for the
functionGδ (r,µ2

R), the domainsr > 0 andr ≤ 0 should be considered separately. Atr > 0, δ can
be safely set to zero and the functionGδ (r,µ2

R) should be expanded in powers ofµ−2
R :

Gδ (r,µ2
R) =

1
(2π)2Γ(r)

[

− br−2lC +
r−2

∑
k=1

br−k−2Γ(k)

(µ2
R)k

]

+ J(r) + O(µ2
R)+O(δ ), (2.5)

wherebn are the coefficients of the asymptotic expansion atz → ∞ of the function2

exp(−4z)I4
0(z) ≃

1
(2πz)2

(

1+
b1

z
+

b2

z2 + ...

)

, (2.6)

lC = ln(µ2
R)+C, andC is the Euler-Mascheroni constant. Atr < 0, µR can be safely set to zero and

the functionGδ (r,0) should be expanded inδ as follows:Gδ (r,0) = B(r)+ J(r)δ +O(δ 2).
The functionsJ(q), in their turn, obey recursion relations of the type

c0(q)J(q)+ c1(q)J(q+1)+ c2(q)J(q+2)+ c3(q)J(q+3)+ c4(q)J(q+4) = 0 (2.7)

derived in [5]; the explicit expressions for the coefficients ci(q) can be found in [6]. Thus we
expressJ(q) atq ≥ 4 and atq ≤ 0 in terms ofJ(0),J(1),J(2) andJ(3). It should be noted thatJ(0)

does not appear in ultimate expressions for the integrals (2.1). Then one can introduce the values

Z0 =
J(1)

2
, F0 = 4π2J(2), Z1 = 32J(3)−8J(2)+

13
6π2 +

1
4
, (2.8)

which are equal to [1]Z0 ≈ 0.15493339023,Z1 ≈ 0.10778131354,F0 ≈ 4.369225233874758.
1Using integration by parts
2I0(z) is the Infeld function.
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2.2 Fermion Integrals

In the fermionic case, we consider the quantitiesF(p,q; ñ) = limδ→0Fδ (p,q; ñ), where

Fδ (p,q; ñ) = lim
δ→0

∫

d4k
(2π)4

cosn1(k1)cosn2(k2)cosn3(k3)cosn4(k4)

∆q
B∆p+δ

F

. (2.9)

With the recursion relations similar to (2.2) these integrals are expressed in terms of the functions

Gδ (p,q) =
∫

d4k
(2π)4

1

∆q
B∆p+δ

F

, which can be represented in the form

Gδ (p,q) = D(p,q;µ2
R)+ B(p,q)+ δ (L(p,q;µ2

R)+ J(p,q))+O(δ 2), p ≤ 0; (2.10)

Gδ (p,q) = D(p,q;µ2
R)+ J(p,q)+ O(δ ), p > 0.

The divergent partsD(p,q;µ2
R) andL(p,q;µ2

R) in the domain of interest can be determined by a
straightforward procedure [5], whereas the functionsB(p,q) andJ(p,q) obey recursion relations
of several types. These relations and the procedure of theirderivation were described in [5]; their
explicit form (very cumbersome) is given in [6]. With the useof these relations, the functions
F(p,q; ñ) can be represented (see [1], [5]) as linear combinations of the constantsF0, Z0, Z1 and

Y0 =
J(2,0)

4
−

F0

16π2 , Y1 =
1
48

−
1
4

Z0−
1
24

J(−1,2)+
1
12

J(0,1)+
1
12

J(1,0), (2.11)

Y2 =
1
6
−

1
π2 −Z0−

1
6

J(−1,2)+
1
3

J(0,1)−
1
24

J(1,−2)−
1
12

J(1,−1)−

−
17
8

J(1,0)+4 J(1,1)−
1
48

J(2,−2)+
25
6

J(2,−1)−4 J(2,0),

Y3 = −
1

384π2 −F0
1

128π2 +
1
96

Z0−
1
48

J(−1,3)+
1

192
J(0,1)+

1
48

J(0,2)+
1
48

J(1,1);

Y4 =
J(1,0)

2
, Y5 = J(1,−1), Y6 = 2J(1,−2), Y7 =

J(2,−1)

2
, (2.12)

Y8 = J(2,−2), Y9 =
J(3,−2)

2
, Y10 = J(3,−3), Y11 = 2J(3,−4).

The respective codes can be found on the web page of the ITEP Lattice group
http://www.lattice.itep.ru/∼pbaivid/lattpt/. The results stored there are as
follows: (i) the program for a computation ofF(p,q; ñ) at 0≤ p,q ≤ 9 andn1+n2+n3+n4 ≤ 25;
(ii) the values of the functionsJ(p,q) andB(p,q) at−26≤ p ≤ 0, −56− 2p ≤ q ≤ 34 and the
values ofJ(p,q) at 1≤ p ≤ 9, −28≤ q ≤ 33− p; and (iii) The explicit expressions forF(p,q; ñ)

at some particular values ofp andq and alln1 ≤ 6.

3. The Lüscher–Weisz method

To outline the LW method [7] of computation of two-loop diagrams in the coordinate representa-
tion, we consider the diagram in Fig.1, given by the expression

4
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x 0

Figure 1

AB(p) = ∑
x∈Λ

e−ipxG3
B(x). (3.1)

In the bosonic case, Lüscher and Weisz calculated
AB(0) and its asymptotic expansion whenp→ 0; they
used the following representation:

AB(0) = G3
B(0)+ ∑

x∈Λ′

G3
as(x) (3.2)

+ ∑
x∈{FN}

(

G3
B(x)−G3

as(x)
)

+ ∑
x∈{Λ′\FN}

(

G3
B(x)−G3

as(x)
)

,

whereFN = {x : |x1|+ |x2|+ |x3|+ |x4| ≤ N}, andGas(x) is an asymptotic approximation ofGB(x)
whenx → ∞,

Gas(x) =
1

[x2]
+

(

2[x4]− [x2]2

[x2]4

)

+

(

40
[x4]2

[x2]7
+16

[x4]

[x2]5
−48

[x6]

[x2]6
−4

1
[x2]3

)

+ ... (3.3)

In the domainFN , the propagatorGB(x) can computed by the recursion formulas

GB(x+ µ̂) = GB(x− µ̂)+
2xµ

(

∑4
ν=1xν

)

4

∑
λ=1

(GB(x)−GB(x− λ̂ )), (3.4)

which allow to express it in terms ofGB(0,0,0,0) = Z0 andGB(1,1,0,0) = −1/4+ Z1 + Z0. The
domain{Λ\FN} is chosen so that the propagator is fitted by its asymptotic expression (3.3) with a
sufficient precision making it possible to neglect the thirdsum in the formula (3.2). Then the first
sum can be calculated exactly using the summation formulas derived in [7] and the second sum can
be expressed in terms ofZ1 andZ2 by employing the relations (3.4).

4. Two-loop fermionic integrals.

In the fermionic case, calculations are performed by the same procedure, however,we have
no recursion relations similar to (3.4).The fermionic propagator inx-representation

GF(x1,x2,x3,x4) =
∫

d4k
(2π)4

cos(k1x1)cos(k2x2)cos(k3x3)cos(k4x4)

∆F
(4.1)

is expressed in terms of the quantities

F(p,q;n1,n2,n3,n4) =

∫

d4k
(2π)4

cosn1(k1)cosn2(k2)cosn3(k3)cosn4(k4)

∆q
B∆p+δ

F

(4.2)

by making use of the relations

cos(nx) = 2n−1 cosn x +
n
2

[n/2]−1

∑
k=0

(−1)k+1

k +1
Ck

n−k−2(2cosx)n−2k−2. (4.3)
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To employ the LW method outlined above, we compile a table of values ofGF(x) over the domain
x1 ≥ x2 ≥ x3 ≥ x4 ≥ 0, |x| ≤ 48 and derive an asymptotic approximation ofGF(x) at |x| → ∞ up to
the terms of the order 1/[x2]4. To treat integrals with nontrivial numerators, we should also compile
the tables of the values

KB[F] =

∫

d p
(2π4)

(e−ipx −1)

D2
B[F](p)

, LB[F] =

∫

d p
(2π4)

(

e−ipx −1+
x2

8
(4 −

4

∑
µ=1

cos2 kµ)

)

D3
B[F](p)

, (4.4)

Each of these tables involves 14147 entries, each entry is a linear combination of the constants

F0,Z0,Z1, Y0,Y1, ...Y11,
1

(2π)2 , and 1 with rational coefficients; from 5 to 20 MB per table in size.

Fortunately, they can be conveniently treated with FORM [8].

The precision of 20 significant digits in determination of the constantsY4÷Y11 [1], [5] is not
sufficient for computation ofGF(x) at |x| > 6. Using the procedure proposed in [7] for calculation
of Z0 andZ1, we obtain

Y4 = 0.08539036359532067913516702888533412058194147127443265(1)

Y5 = 0.46936331002699614475347539705751803482046295887523184(1)

Y6 = 3.39456907367713000586008689702374496453685272313733503(1)

Y7 = 0.05188019503901136636490228766471579940968012757291508(1)

Y8 = 0.23874773756341478520233613930386970445280194983477988(1)

Y9 = 0.03447644143803223145396188144243193600121277124715784(1)

Y10 = 0.13202727122781293085314731098196596971197144795959477(1)

Y11 = 0.75167199030295682253543148590778110991011277193144803(1)

At |x| > 48,GF(x) is approximated by the function

G(as)
F (x) =

1
[x2]

+

(

8[x4]−4[x2]2

[x2]4

)

+

(

640
[x4]2

[x2]7
−768

[x6]

[x2]6
+208

[x4]

[x2]5
−

40
[x2]3

)

+ ..., (4.5)

To provide an example, let us consider the following two-loop fermionic integrals:

QBBB
1 =

∫

BZ

d4k
(2π)4

d4q
(2π)4

4

∑
µ=1

k̂2
µ q̂2

µ

DB(k)DB(q)DB(r)
(4.6)

QBBF
1 =

∫

BZ

d4k
(2π)4

d4q
(2π)4

4

∑
µ=1

k̂2
µ q̂2

µ

DB(k)DB(q)DF(r)

and similar quantities with other combinations of bosonic and fermionic propagators. We can also
consider

QBBF
2 =

∫

BZ

d4k
(2π)4

d4q
(2π)4

4

∑
µ=1

k̂2
µ q̂2

µ r̂2
µ

DB(k)DB(q)DF(r)
(4.7)
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etc. The results of the computations are as follows:

QBBB
1 = 0.042306368(1) QFBB

1 = 0.020079702(3) (4.8)

QBBF
1 = 0.024555253(3) QFFB

1 = 0.00969896(1)

QBFF
1 = 0.01173224(1) QFFF

1 = 0.00576013(3)

QBBB
2 = 0.05462397818(1) QBBF

2 = 0.02659175158(3)

QBFF
2 = 0.0130373237(1) QFFF

2 = 0.0064945681(3)

5. Summary and Outlook

The BCP algorithm has been realized on a computer. The basic fermionic integralsG(p,q)

are found over a sufficiently large domain of values ofp andq. This allows (i) to express one-loop
intergals involving fermionic denominators in terms of theconstantsF0,Z0,Z1 andY0÷Y11 and (ii)
to computeGF(x) at |x| ≤ 96.

The LW method is extended to the case of fermions; asymptoticbehavior of the fermionic
propagator at|x| → ∞ is found. Therewith,GF(x) is expressed at|x| ≤ 48 in terms of the constants
Y4 ÷Y11, the values of which are computed to a precision of 54 significant digits. This is really
needed for calculation of two-loop integrals. A new featureof FORM - a possibility to work with
database-like structures - proved to be useful for summation over the domain|x| ≤ 48. As an
illustration, several two-loop fermionic integrals are evaluated at zero external momentum.

Operations with a table of precise values of the functionsGB(F)(x) KB(F)(x) and LB(F)(x)
allow to compute one-loop and two-loop diagrams of the propagator type at nonvanishing external
momentum. The work is in progress!
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