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Outline

* General motivation

* Electron-positron collisions

« Linear Collider physics overview
 Accelerator issues

* Linear Collider status

 Outlook
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Revealing the origin of the universe

Older ..... larger ... colder ....less energetic
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Telescopes to the early universe

Older ..... larger ... colder ....less energetic
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Particle Physics Periodic Table
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Profound Questions

Why do the particles all have different masses,
and where does the mass come from?
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Profound Questions

Why do the particles all have different masses,
and where does the mass come from?

Why are the building blocks fermions and the
force carriers bosons?
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Profound Questions

Why do the particles all have different masses,
and where does the mass come from?

Why are the building blocks fermions and the
force carriers bosons?

Why are there 3 forces? (+ gravity!)
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Profound Questions

Why do the particles all have different masses,
and where does the mass come from?

Why are the building blocks fermions and the
force carriers bosons?

Why are there 3 forces? (+ gravity!)

Why are there 3 generations of building blocks?
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Profound Questions

Why do the particles all have different masses,
and where does the mass come from?

Why are the building blocks fermions and the
force carriers bosons?

Why are there 3 forces? (+ gravity!)
Why are there 3 generations of building blocks?

Where did all the antimatter go?
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Composition of the universe
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Composition of the universe

Force Carriers
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More Profound Questions

 Why is only 4% of universe atomic matter?
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More Profound Questions

 Why is only 4% of universe atomic matter?

« What is the 23% dark matter content made of?
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Even More Profound Questions

 Why is only 4% of universe atomic matter?
 What is the 23% dark matter content made of?
 What is the 73% ‘dark energy’?
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Large Hadron Collider (LHC)

i SETTeee——— I
s proton
beams

of 7 TeV
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ICFA Statement on LC (1999)

‘To explore and characterize fully the new physics
that must exist will require the Large Hadron
Collider plus an electron-positron collider with
energy in the TeV range.
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ICFA Statement on LC (1999)

‘To explore and characterize fully the new physics
that must exist will require the Large Hadron
Collider plus an electron-positron collider with
energy in the TeV range.

Just as our present understanding of the physics
at the highest energy depends critically on
combining results from LEP, SLC, and the
Tevatron, a full understanding of new physics
seen in the future will need both types of high-
energy probes.’
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e+e- colliders

Produce annihilations of point-like particles under
controlled conditions:
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e+e- annihilations
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e+e- colliders

* Produce annihilations of point-like particles under
controlled conditions:

well defined centre of mass energy: 2E
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e+e- colliders

* Produce annihilations of point-like particles under
controlled conditions:

well defined centre of mass energy: 2E

complete control of event kinematics:
p=0,M=2E
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e+e- annihilations

Philip Burrows 24 Linear Collider Physics School, Ambleside 17/08/09




e+e- colliders

* Produce annihilations of point-like particles under
controlled conditions:

well defined centre of mass energy: 2E

complete control of event kinematics:
p=0,M=2E

highly polarised beam(s)
clean experimental environment
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e+e- colliders

* Produce annihilations of point-like particles under
controlled conditions:

well defined centre of mass energy: 2E
complete control of event kinematics: p =0, M = 2E
highly polarised beam(s)

clean experimental environment

« Give us a precision microscope:

masses, decay-modes, couplings, spins,
handedness, CP properties ... of new particles
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e+e- annihilations
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e+e- annihilations
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Where to look for the Higgs Boson?

1. Direct production of Higgs bosons in electron-positron
annihilations and hadron-hadron collisions

2. Indirect effects of Higgs bosons via radiative
corrections to sensitive observables

(‘Lamb shift’)
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Radiative Corrections

ZIN ZIN  ZIW Z/WN
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M_H from radiative corrections

July 2008
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ZH event signatures
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Current Experimental Situation

- No Higgs boson yet observed directly ...
(possible hint at LEP: M_H ~ 115 GeV)

Philip Burrows
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Current Experimental Situation
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Current Experimental Situation

my, = 90 *3%_. GeV

114 < my <163 GeV (95% c.l.)

Philip Burrows 38 Linear Collider Physics School, Ambleside 17/08/09




Higgs mass measurement

+ ¢ Data
+ ZH-puuX Recoil mass:

- independent of
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(TESLA TDR)

Higgs mass measurement

+ ¢ Data
+ ZH-puuX Recoil mass:

- independent of
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(TESLA TDR)




The Higgs Boson: profile

Determine ‘Higgs profile’:

. Mass
. Width
. Spin
. CP nature
. Coupling to fermions ~ m
. Coupling to gauge bosons ~ M**2
. Yukawa coupling to top quark
. Self coupling = Higgs potential
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Higgs spin determination

Rise of
cross-section
near threshold o
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Higgs branching ratios determination
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Higgs self-coupling determination

(Nomerotski)
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Higgs Boson profile

. Mass 50 MeV
. Width 4-13%
. Coupling to fermions: bottom 0.02
charm 0.10
tau 0.05
. Coupling to gauge bosons: W 0.02
Z0 0.01
. Yukawa coupling to top quark 0.06
. Self coupling <20%
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Higgs coupling map

mp = 120 GeV h

0.1}

Coupling constant to Higgs boson (i)
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Determining the Higgs nature

% am |- T, @_1_'_.-\\1- - g +30% LT, (¢ T . . W_ 72 H|
. { 2 i i
+20% 1 2 +20%
5 . c% - coso/sing E
T T, S T W . __
g Higgs/Radionmixing 7| & ™ |
%(SM T vtesrenvtesressnervasssssvaraesressrosmassanrisnses
§ 0 " s O(SM) i ——0— ¢
T -10% - — % -10% sin(a=f)
- D » . T —
20% = e SN - 20% | sina/cosp s
‘iﬁ ‘7Awfﬁi*wi'*rv‘* - Model Independent Analyses |
-30% ~ -30%
Zivkovic et al
Philip Burrows 47 Linear Collider Physics School, Ambleside 17/08/09
mSUGRA GMSB AMSB
800 ¢, —— s g -
B i by oz r.L bf 7]
- tl . f;F -
| 3.4 S "’-1 -
600 -
% L, b A
.g. - gL ba -
T 2
= 400 | by Xt T
S L P
- A3 — Az i
- [PE—— -
200 . L + -
| py — 1, + A X1 er Tz _
B bx ,\EH\’l \,CI e CR. Ve TL. Vs |
L ’l g i




e+e- annihilations
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e+e- annihilations
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e+e- annihilations
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Is it really Supersymmetry? ...

Does every SM particle have a superpartner?
If so, do their spins differ by 1/2?
Are their gauge quantum numbers the same?

Are their couplings identical?
Do they satisfy the SUSY mass relations?
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...and if so, how is SUSY broken?
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... and furthermore

what are the values of the 105 (or more)
parameters?

is the lightest SUSY particle the neutralino?
or the stau? the sneutrino? the gravitino?
does SUSY give the right amount of dark
matter?
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SUSY Decay Chains

Reconstruction of heavier
particles depends on
knowledge of mass of LSP:

Cascade decay chains,
end with LSP, eg:
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Neutralino production

E. Elair, U. Martvn
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Neutralino production

1200 - - - . - - - . ; . .
B00 - —
400 - —
D 1
o 20 a0 120
lepton energy F, [GeV]
Philip Burrows 57 Linear Collider Physics School, Ambleside 17/08/09

Chargino production
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Precision on SUSY Mass Measurements

MSUGRA ‘SPS1a’ parameters:

particle mass(GeV) LHC LHC +LC
h0 109 0.2 0.05
A0 359 3 1.5
chi_1+ 133 3 0.11
chi_1 73 3 0.15
shu_e 233 3 0.1
e 1 217 3 0.15
snhu_tau 214 3 0.8
stau_1 154 3 0.7
u 1 466 10 3
t 1 377 10 3
gluino 470 10 10
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SUSY and dark matter

Dark Matter Mass from Supersymmetry {GeY)
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Beam polarisation - handedness

Vs = 500 GeV

Selectron quantum numbers: P{e-)=+90%

g+e- -> sel+ sel- -> e+ e- 2 chi01/th
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Importance of beam polarisation

Mass (GeV)
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Spins from angular distributions
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Large Electron Positron collider (RIP)
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Future circular e+e- collider?

0.25 TeV

beams?
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Future circular e+e- collider?

0.25 TeV

beams

Philip Burrows - Linear Collider Physics School, Ambleside 17/08/09




International Linear Collider (ILC)

Ve

Not to Scale

€
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Schematic Layout of the 500 GeV Machine
‘ 31 km V
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SLAC Linear Collider

Philip Burrows 68 Linear Collider Physics School, Ambleside 17/08/09




ILC performance specifications

ICFA — ILCSC parameters study:

200 < E <500 GeV

Energy scan capability

Energy stability, and precision measurement,
<0.1%

e- polarisation > 80%

L ~ 500 fb-1 in 4 years

Upgrade capability to 1 TeV

(e+ polarisation desirable)
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ILC superconducting RF cavity

- Achieve high gradient (35MV/m); develop multiple
vendors; make cost effective, etc

- Focus is on high gradient; production yields; cryogenic
losses; radiation; system performance

Philip Burrows 70 Linear Collider Physics School, Ambleside 17/08/09




ILC Main Linac RF Overview

560 RF units each one composed of:

* 1 Bouncer type modulator

* 1 Multibeam klystron (10 MW, 1.6 ms)
* 3 Cryostats (9+8+9 = 26 cavities)

* 1 Quadrupole at the center

Total of 1680 cryomodules and 14 560 SC RF cavities

cryomodule connection cryomodule connection /
J 1|

masaue

A : i }
— N | Ve L . =
lmwwmmiﬁmmm-#W--:mmmmmwwww-‘n
0 U 0 0 1 | U 8 U J 0 1 8] 0 0 U 1 U i U 8 U
- / . beam lane.
Linear RF Power distribution —— SHEine splitt \drc lator pmp [ pemp
with circulator & stub or EH tuner for every stub tuner cryemeade
cavity input
Bouncer Modulator i
Front end electronics
10MW Multi-beam
Delahaye Klysiron,

socket assembly

1:12 Pulse Trans

Global SCRF Technology

TRIUMF, Canada
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N. Walker - ILC08
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European X-FEL at DESY

3.4km

. Sy 2
Ng efe‘,: '_|| ~ The European X-ray laser project XFEL

Y (Pinnebe s/ Planning status October, 2003
& ¥
‘ .j--'A Z :5‘

wewws  XFEL site £+50m
«=«+ Options for e
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ILC beam parameters

T00 (6002SdD1 )Sod

ILC
Electrons/bunch 0.75
Bunchesl/train 2820
Train repetition rate 5
Bunch separation 308
Train length 868
Horizontal IP beam size 655
Vertical IP beam size 6

Longitudinal IP beam size 300
Luminosity 2

10**10

Hz
ns
us
nm
nm

um
10**34
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Reference Design Report (Feb 2007)

Reference Besign Report { Executlve Mefere ::.u /1 O PhySICS
@ Summary ——g at the
ILC
O 700 authors,
84 institutes
Accelerator Detectors
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ILC timeline

2005 2006 2007 2008 2009 2010 2011 2012 2013

B
N Reference Design Report (RDR)

I Tech. Design Phase (TDP) 1
N TDP 2

Ready for Project
Submission

GDE process
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ILC Detectors

3 Detector Concept groups:

SiD, ILD, 4t Concept
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The SiD Detector Concept

ECAL

Vertex
Detector
HCAL

Tracker

Solenoid

Flux Return and
Muon chambers

79

Detector specifications

Designed for precision measurements:
« Large B-field: 3-5 Tesla
* Vertex detector:

 Tracker:
momentum resolution <5 x 10-5
« Calorimetry:
O(100M) channels (EM)
particle-flow (PFA) approach: W + Z i.d.
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CLIC - basic features

CLIC TUNNEL

* High acceleration gradient: > 100 MV/m
“Compact” collider — total length < 50 km at 3
TeV

— Normal conducting acceleration structures at
high frequency

Novel Two-Beam Acceleration Scheme
—  Cost effective, reliable, efficient
— Simple tunnel, no active elements
— Modular, easy energy upgrade in stages

QUAD

POWER EXTRACTION
STRUCTURE

4.5 m diameter

Drive beam - 95 A, 300 ns
from 2.4 GeV to 240 MeV

z — 140 MW

ACCELERATING

Main beam — 1 A, STYHAL Delahaye

fro La TeV W Collider Physics School, Ambleside 17/08/09
Beam parameters
ILC (500) CLIC (3 TeV)

Electrons/bunch 0.75 0.37 10**10
Bunchesl/train 2820 312

Train repetition rate 5 50 Hz
Bunch separation 308 0.5 ns
Train length 868 0.156 us
Horizontal IP beam size 655 45 nm
Vertical IP beam size 6 0.9 nm
Longitudinal IP beam size 300 45 um
Luminosity 2 6 10**34
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CLIC Layout 3 TeV

(not to scale)
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BC  bunch compressor e~ injector, 2.4 GeV

e’ injector, 2.4 GeV
BDS beam delivery system

P interaction point Delahaye
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Delahaye

CLIC Two Beam Module
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Nominal performance of Accelerating Structures
Design@CERN, Built/Tested @KEK, SLAC

BKD Rate for 230ns
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LHC

« Is there a Higgs boson that generates mass?
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LHC and LC

« Is there a Higgs boson that generates mass?
is it consistent with Standard Model?
is it a SUSY Higgs?
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LHC

« Is there a Higgs boson that generates mass?
is it consistent with Standard Model?
* |Is Supersymmetry realised in nature?
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LHC and LC

« Is there a Higgs boson that generates mass?
is it consistent with Standard Model?

* |Is Supersymmetry realised in nature?
what is the mechanism of SUSY breaking?

can the lightest SUSY particle account for
dark matter?
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LHC

« Is there a Higgs boson that generates mass?
is it consistent with Standard Model?

* |Is Supersymmetry realised in nature?
what is the mechanism of SUSY breaking?

can the lightest SUSY particle account for
dark matter?

« Are there extra spatial dimensions in nature?

Philip Burrows 90 Linear Collider Physics School, Ambleside 17/08/09




LHC and LC

Philip Burrows

91

Is there a Higgs boson that generates mass?

is it consistent with Standard Model?
* |Is Supersymmetry realised in nature?

what is the mechanism of SUSY breaking?

can the lightest SUSY particle account for
dark matter?

Are there extra spatial dimensions in nature?

how many are there and what is their scale?
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Manifestation of extra dimensions

g (fh)

Kaluza-

Klein
resonances
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LHC

Is there a Higgs boson that generates mass?
is it consistent with Standard Model?

Is Supersymmetry realised in nature?
what is the mechanism of SUSY breaking?

can the lightest SUSY particle account for
dark matter?

Are there extra spatial dimensions in nature?
how many are there and what is their scale?
Are the forces of nature unified?
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LHC and LC

Is there a Higgs boson that generates mass?
is it consistent with Standard Model?

Is Supersymmetry realised in nature?
what is the mechanism of SUSY breaking?

can the lightest SUSY particle account for
dark matter?

Are there extra spatial dimensions in nature?
how many are there and what is their scale?
Are the forces of nature unified?
at what energy scale?
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Extrapolation to GUT scale: LHC only
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Extrapolation to GUT scale: LHC +LC
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LHC and LC

Is there a Higgs boson that generates mass?
is it consistent with Standard Model?

Is Supersymmetry realised in nature?
what is the mechanism of SUSY breaking?

can the lightest SUSY particle account for
dark matter?

Are there extra spatial dimensions in nature?
how many are there and what is their scale?
Are the forces of nature unified?
at what energy scale?
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Extra material follows
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Top-Higgs Yukawa Coupling (LC)

Philip Burrows 99

8-jet final state
containing 4 b-jets

[os
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Top-Higgs Yukawa Coupling: Results (LC)

* H— bb semllep; Ac" /a™" = 5%
BG BG
H — bb semllep; Ac™ o= = 10%
BG BG
+ H — bb hadro; Ac” /™" = 5%
BG BG
* H — bb hadro; Ac”a™" = 10%
BG BG
* H— WW 2 llke slgn lep; Ac™ /a™" =59%
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H — WW 2 llke slgn lep; Ac™ o =10%
BG BG
* H—WW1 lep;: Ac™/a™ = 59%
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T H—=WW1 lep: AT /6™ = 109
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Top-Higgs Yukawa Coupling: LHC + LC

ﬂ 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1

LHC 300 fb™" at 14 TeV + LC 500 b at 500 GeV
{(stat. error only)
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Higgs boson: W vs. top couplings
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Higgs Boson: Fermion Couplings

Bottom vs. charm

Bottom vs. tau
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Extrapolation of mMSUGRA and GMSB

mSUGRA GMSB
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Historical example: Z boson

CERN Super Proton
Synchrotron:
540 - 640 GeV

Discovered W, Z in 1983
c. 100 Z (UA2):

M_Z = 91.74+-0.97 GeV
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Historical example: Z boson

CERN Super Proton LEP, SLC ete-:

Synchrotron:

540 - 640 GeV 91 GeV

Discovered W, Z in 1983 Turned on 1989

c.100 Z: 16 million Z + polarisation:

M_Z =91.74+-0.97 GeV M_Z =91.1876+-0.0021 GeV
width = 2.4952 +- 0.0023 GeV
Couplings to:

e, mu, tau, b, c, s, u/d...
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Precision data

July 2008

(5)
| Aahad=
1 3 —0.02758+0.00035
4% e 0.02749:0.00012

« incl. low Q° data

Axe
w
|

AG

A(SLD)
sin®8P(Q)
my”

l"w*

0 | Excluded \" J‘e‘-'f': Preliminary|
30 100 300
my, [GeV]

Qu{Cs)
sin®gg(eeT)
sin6y,{(vN)
gE(vN)
gavN)

*preliminary

10 MH [ GjigV] 10 Linear Collider Physics School, Ambleside 17/08/09




Precision data
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Beam parameters

ILC

Electrons/bunch 0.75 10**10
Bunchesl/train 2820

Train repetition rate 5 Hz
Bunch separation 308 ns
Train length 868 us
Horizontal IP beam size 655 nm
Vertical IP beam size 6 nm
Longitudinal IP beam size 300 um
Luminosity 2 10**34
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Designing the future LC

pre-accelerator

C) source

final focus
L M T I I

main linac L
compressor collimation
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Key challenges

- Energy:

* Luminosity:
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ILC value breakdown

4,500

4,000

3,500

3,000
Conventional Facilities
2,500
Components
2,000
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1,500

1,000

500

Main DR RTML e+ BDS Common EpoaII e-
Linac Source Source
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Main Linac RF Overview

560 RF units each one composed of:

* 1 Bouncer type modulator

* 1 Multibeam klystron (10 MW, 1.6 ms)
* 3 Cryostats (9+8+9 = 26 cavities)

* 1 Quadrupole at the center

Total of 1680 cryomodules and 14 560 SC RF cavities

cryomodule connection cryomodule connection / ~~~~~
=
I

lwmwmwwmmm mmmm —«MWWW mmmmmww
0 U 8 U U B 1 0 : 1 J 0 1 J 0 0 U 1 U i U [ U
c beam hne
Linear RF Power distribution ~ —* " " SHEine splitter \ \drcul-lor by | v
with circulator & stub or EH tuner for every stub tuner cryemeade
cavity input
Bouncer Modulator i
Front end electronics
:((:Mw Multi-beam
ystron,
Delahaye socket assembly

1:12 Pulse Trans




ILC SC RF cavity

- Achieve high gradient (35MV/m); develop multiple
vendors; make cost effective, etc

- Focus is on high gradient; production yields; cryogenic
losses; radiation; system performance
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European X-FEL at DESY

3.4km

\'LQ \G’E“\ AR VRN AN L\ — N P/

o = The European X-ray laser project XFEL

Planning status October, 2003

T‘f]ﬂ( Delahaye
= S
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TESLA module results (FLASH)
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Global SCRF Technology

TRIUMF, Canada _
@ C ' STFC |HEP, China
orne DESY.
Fsr\ll_ﬁc ANI@% S AL (®XEK, Japan
Saclay INEN Milan ®

BARC, RRCAT India

©

Emerging SRF

N. Walker - ILC08
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:In Status of 9-Cell Cavity R&D
(JLF

48 Tests, 19 cavities 23 tests, 11 cavities
ACCEL, AES, Zanon, Ichiro, Jlab One Vendor

Al Wendor Yiekd
A0, AT, AR AT, ALZ ALE AxE 1-4 lchiro, J2ACTIE ACHT, ACIE,
A2E, 19, Z930, 149

O Vendor Yiekd
(88, AT, AR, A1, K13, A&, AC1AE, AC1AT, AC1ED, 1236, 124)

Yield 45 % at 35 MV/m being achieved Barish
bv cavities with a qualified vendor !l
ILC & XFEL timelines
2005 2006 2007 2008 2009 2010 2011 2012 2013

. -
ocess
I Reference Design Report (RDR) P

S I Tech. Design Phase (TDP) 1

N TDP 2
LHC physics -
Ready for Project
Submission

S <FEL R&D
_— W XFEL preparatory engineering
B XFEL civil construction

JXEEL cryomodule production

FIRST BEAM
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Key challenges

- Energy:
sustain high gradients
ILC: > 30 MeV/m
CLIC: c. 100 MeV/m
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Niobium Accelerating Cavities
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Niobium Accelerating Cavities
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Luminosity challenge

 ILC luminosity goal 2  x 10** 34 /cm**2/s
Tiny beams: 5 nm (y) x 500 nm (x) at IP

Long trains of bunches: 3000
Bunch spacing 150 ns
 Trains come every 5 Hz

 Making and colliding such beams not easy!
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Luminosity challenge

« |LC (CLIC) luminosity goal 2 (6) x 10** 34 /lcm**2/s
Tiny beams: 5 (1) nm (y) x 500 (50) nm (x) at IP
Long trains of bunches: 3000 (300)

Bunch spacing 150 (0.5) ns

« Trains come every 5 (50) Hz

 Making and colliding such beams not easy!

Philip Burrows 125 Linear Collider Physics School, Ambleside 17/08/09

A shaky accelerator

- ‘static’ effects:

misalignments ...
* diffusive effects:

settling, hydrology ...
* ‘seismic’ motion:

earthquakes, ocean waves ...
« cultural/facilities noise:

traffic, pumps, water flow...
 slow drifts:

temperature, pressure ...
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LC status

ILC is being run by Global Design Effort (Barish)

C. 1000 accelerator scientists worldwide are involved
A Baseline Design (BCD) was completed 2005

A Reference Design Report (RDR) was released in 2007

including a first cost estimate
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Cost estimate

=~ -\
NZ

)
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Not to scale!




ILC Cost Estimate (February 2007)

= shared value = 4.87 Billion ILC Value Units
= site-dependent value = 1.78 Billion ILC Value Units
= total value = 6.65 Billion ILC Value Units

(shared + site-dependent)

= labour = 22 million person-hours = 13,000 person-years

(assuming 1700 person-hours per person-year)

Philip Burrows 129 Linear Collider Physics School, Ambleside 17/08/09

ILC Cost Estimate (February 2007)

= shared value = 4.87 Billion ILC Value Units
= site-dependent value = 1.78 Billion ILC Value Units
= total value = 6.65 Billion ILC Value Units

(shared + site-dependent)

= labour = 22 million person-hours = 13,000 person-years

(assuming 1700 person-hours per person-year)

1 ILC Value Unit =1 US Dollar (2007) = 0.83 Euros = 117 Yen
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This was noticed!

News
Nature 445, 694 (15 February 2007) Published online 14 February 2007
Physicists pitch biggest accelerator

Collider costed - atom smashers don't come cheap
17 February 2007
From New Scientist Print Edition Dark matter and 'God particle’ within reach
Thursday, 15 February 2007
by Frederic Garlan
News of the Week Agence France-Presse
PHYSICS:
International Team Releases Design, Cost for Next Great Particle Smasher

Multibillion-dollar collider plans unveiled $7b proposed for particle study

8 Feb.ruary 2007 By Jia Hepeng
PhysicsWeb 8 February 2007 Updated: 2007-02-09 06:45

Next-Gen Smasher to Cost $6.6B
Physicists plan costly look at the beginnings of the universe  Wired News

International Herald Tribune 8 February 2007
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Reference Design Report (Feb 2007)

Reference Besign Report { EXGCUtIVG PhyS|CS
§  Summary at the
ILC

700 authors,
84 institutes

Detectors
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ILC project status

ILC is being run by Global Design Effort (Barish)

C. 1000 accelerator scientists worldwide are involved

A Baseline Design (BCD) was completed 2005

A Reference Design Report (RDR) was released in 2007
including a first cost estimate

2008-12 Technical Design Phase (TDP)
major focus is on design optimisation + cost reduction

Ready for ‘construction decision’ by 2012, in light of LHC
results ...
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ILC Detectors

Reference Design Reports provided by 4 concept groups
in 2007

A Research Directorate was formed in 2007

Letters of Intent to the ILC Research Director (Sakue
Yamada) are due by 31/3/09

International Detector Advisory Group (Chair: M. Davier)
will review Lols: outcome Autumn 2009

Those concepts ‘validated’ will proceed to a Technical
Design as a companion to machine TDR in 2012

Detector R&D ongoing; CLIC detector work started
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Bunch Structure

N
Bunch
CLIC: 1 train = 312 bunches 0.5 ns apart 50 Hz rate
ILC : 1 train = 2680 bunches 337 ns apart 5 Hz rate

Huge number of e*e- pairs produced in strong fields of beams
(beamstrahlung)

Need time-slicing within bunch trains to reduce detector occupancy

—  Trade-off of power and material
— Difficult at CLIC
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Accelerators Roadmap

—lesla
(cold)
L [ GlobalDesign Effort |
nc O O QF O O
(warm)
|
2004 2007 . 2010 2012
Cold Machine RDR 1 TDR TDR
Decision Design ) Phase I Phase II
Report I
C|>
2004 2008 2010 2015
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Worldwide Status: Europe

New CERN DG: LC is part of CERN strategy and objectives

— CERN sees a Linear Collider as the logical next machine and promotes
CLIC studies and ILC-CLIC collaboration

CERN hosted CLIC studies since long time
— ILC and CLIC formed a common study group in 2008

CERN also has now an official LC Detector R&D project
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Worldwide Status: US

After ‘black December’ 2007 budget restored for ILC work by

Congress
— FY09 & FY10 budget $35M + some from stimulus packages

Detector R&D package approved by DOE and NSF

P5 encourages “R&D on the ILC”
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Worldwide Status: Japan

ILC has strong support from the

government and industry

— Formed Advanced Accelerator Association
Promoting Science & Technology (AAA)

Government
National Strategies

—  Takeo Kawamura (Minister of State, Chief Cabinet
Secretary, secretary of “Federation of Diet members
to promote the realization of ILC”),

“.. will go over the ILC project as a national

strategy. Academia I
Basic Science
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LC Detector: Physics Requirements

. . . . PP
_MWW. rery

— e.g. Higgs branching ratios
Precision Tracking

— Recoil mass measurements

Jet energy resolution
—  Multi jet final states e.g. ttbar
— Separation of WW/ZZ
— Particle Flow algorithms

Forward region very important
— ILC physics becomes forward boosted at higher energies
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LC Detector

LC detector is challenging

Challenge is in precision
— Calorimeter granularity ~200 better than LHC

— Vertex detector:
= Pixel size ~20 smaller than LHC
= Material budget, central ~10 less than LHC
= Material budget, forward ~>100 less than LHC
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UK Working Areas

—Calorimetry
(CALICE)

Vertexing
(LCFI)
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Particle Flow Algorithm & CALICE

PFA: measure energy of

—  Charged particles in the tracker
Photons in Ep Al

— BUT: need to disentangle contribution of each particle to
avoid double counting

Requires excellent segmentation of CAL

PFA can deliver desired energy resolution: o(E;y)/Ej; < 4
%

CALICE is covering several alternative PFA technologies
for both ECALs and HCALs

—  Proof of concept prototypes

—  2010: realistic "technical" prototypes with a reasonable size
and shape for LC detectors

Particle Flow (ILD+PandoraPFA)

- Particle Flow (no confusion term)

| IEEE AT AR

9
CALICE conclusions will dominate the ILC design choicegt
EG’

= “digital” ECAL resolution ~50% better 0.06
than “analogue”

100 200 300 400 500
Philip Burrows 143 Linear Collider | E./GeV
WMkl UIN
‘_Lu-tu T T T | T T T | T T T | T T T T T T |
' g14f Sana= 0.1456+ 0.001
D|g|ta| ECAL [ Cana= 0.0101+ 0.0005
0.12- Sag= 0.0952% 0.0007 —
— Number of charged particles 1s a better [ = 0.008+ 0.0003
estimate than deposited energy 0.1F-
* No Landau fluctuations or angular 008
smearing r

0.04
Data Ach|S|t|0n s Analogue case
— Software and hardware components for 0'027 = Digital case
CAL control and readout gl -
— Challenging data rates 1NEyc (GeV?)

| & L .
B ==
i I

[CEERE |
® | "B

l
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LCFI: Vertex Detector

1 Giga channels of 20x20 ym pixels in 5

tayers with fastTeadout
— 3 um resolution
— Low material budget 0.1% X, per layer

LCFI Vertex Package used by entire ILC

community
— Topological vertex finder & flavour
tagging
—  Excellent performance for b- and c- > 'K
taggin 5 [
gging £ osf
0.6F
04F  _ipoo
0.2 :_ ----- ILD_00 (5 Layer VTX)
O [ U TR TR N TR TR TR NN T TN SR NN TN N T N TR T 1 ]
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Efficiency

LCFI: Sensor R&D

—Produced-tOcrnong-CotummParatte-CCB-sensors;readoutand-driverchips;
CPR2A & CPD1

— Achieved low-noise operation at 30 MHz

ISIS sensors with internal charge storage
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Detector R&D Status in UK

Both CALICE-UK and LCFI were told to terminate in 2008

Re-established funding for “Generic Detector R&D” at dramatically reduced level
—  Still relevant for LC detectors
Three successful projects
— LSSSD: Low mass structures
—  SPiDeR: Silicon Pixel Detector R&D
—  Particle Flow: Particle Flow Algorithms

Approved to start in 2009 but SPIDER on hold until April 2010

Work on LC physics, DAQ and VD sensors (ISIS) was not funded at all

LCFI vertexing software will be supported by japanese groups
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SPiDeR

Silicon Pixel Detector R&D for future detectors
—  Birmingham, Bristol, Imperial, Oxford, RAL

Pixels

Integration of sensor and readout electronics
in monolithic detector
—  CMOS technology
—  Target calorimetry, tracking and vertexing

CALICE-UK developed small MAPS sensors
for Digital ECAL

—  TPACI

Goal for Digital CAL: large scale sensor to
demonstrate advantages in test beam

,,,,,,,
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SPiDeR Sensors: Cherwell and ISIS

Cherwell uses INMAPS process and 4T VRESET
architecture

—  Distributed functionality with 100% sensitive Transfer gate
area ™o

4T (four transistors) structure allows efficient
charge capture and amplification

—  Better noise performance due to transfer gate

-

ISIS: enhancement of CMOS

—  Storage of raw charge: noise immunity and no
need for pulsed power 4T Structure

—  ISIS2: first ever implementation of CCD buried
channel in a CMOS process

—  Currently not funded

substrate (p+)

Reset ransisior  Source followsr
and Fow Select

Resct Gate  transisior

Jsolation Transfer  SlOrage storage
Gate  Photogate  Gafe cell #

o, O T
e N

Voo Row Select

reflected chaige
Charge collection
reflected charge
High resistivity epitaxial layer (p]
. . subsirate (p+)
Philip Burrows 149 Linear vomuaer roysics Scroul, AMIesIue 11/Vo/vy

LSSSD

Low-mass Structures for Supporting Silicon
Detectors

— Bristol, Glasgow, Liverpool and RAL

—  Follow-up to LCFI mechanical work
Lightweight elements in silicon carbide foam

— Few % fill factor

— Studying properties, processing, building modules

— Designing all foam VXD, investigate embedded
cooling
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Fartcie riow

Proposal to advance particle flow
_algorithms for future Colliders

— Cambridge, RAL

CERN joined the effort

Will study
— Digital calorimetry and PFA’s
— PFA at TeV energies

=
0]
— Example: separation of WW and ZZ QE

signals at 1 TeV S

8o iriiiizEA T

60T

P N R P TR

60 80 100 120
» _ ete” - vWTW™  m/Gev
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SiD: Compact, 5T field

__ All silicon trackinoe

= 5 ]ayers of pixels & 5 layers of strips

= Single bunch time stamping for strips
— Highly granular PFA calorimetry

= SiW ECAL

»= Fe-RPC digital HCAL

ILD: Large Volume, 3.5 T field
—  Silicon +TPC tracking

= 5 layer pixels & Si Tracking layers
= Large TPC

— Highly granular PFA calorimetry
= SiW ECAL
»= Fe-Scint HCAL

Forward components
(QDO magnet - FCals) ™
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Detector Roadmap

SiD
—O O O O
LDC
—O Validated
ILD Concepts
O O O will prepare
GLD TDR for End
—O ! 2012
4th
—O O O O
2005 2007 4/2008 4/2009 9/2009
Detector Detector Expression Letter Validated
Outline Concepts of of concepts

Dogupmintows  Report 1szInterest  [inebdt@bder Physics School, Ambleside 17/08/09
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Submitted in April 2009
— ILD: 148 institutions; SiD: 77 institutions; CERN signed all three Lols
—___~60 signatures from UK

Benchmarking studies
—  For first time used full simulation and reconstruction for optimization

Studies of Machine Detector Interface (MDI) and push-pull scheme
Leading role of UK physicists in PFA and vertexing software, benchmarking and MDI

il

The

International
Large
Detector

Letter of Intent
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EXdmpies o1 sencnmarks
Visible enernv hatara alaceifinatian |

o ] Higgs sig
SiD Higgs—>cc analysis wep - Higgs bkg
— Signatures: 2 jets + Missing E or 4 jets :Ea Sl '
— Two charm jets: c-tagging "J: -'-——-/151_.___

—  Br(h>cc)=+10% 108

ILD top analysis 10°
10

—  Fully hadronic: 6 jets final state )

. . s 100 150
Employ invariant masses H

— Two bottom jets: b-tagging

B _ w1800
om =+ 30 MeV £ | b) bqd bad 100fb™
-
L | ]
1000 ]
500 1
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My, /GeV

Particle Flow at TeV scale?

Issues to study

— Performance at TeV energy

— Merging of jets

— Flavour tagging: most b-quarks decay
beyond vertex detector

Philip Burrows Linear Collider Physics S




Rolf Heuer (LCWSO08 closing talk)

We are NOW entering a new exciting era of particle physics
Turn on of LHC

allows particle physics experiments

at the highest collision energies ever

Expect

- revolutionary advances in understanding the microcosm
- changes to our view of the early Universe

Results from LHC will guide the way

Expect

- period for decision taking on next steps in 2010 to 2012
(at least) concerning energy frontier

-(similar situation concerning neutrino sector 0,;)
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www.linearcollider.org
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