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Introduction What have we seen?

� all collider experiments are compatible with a renormalization of
some 18 parameters of the dim � 4 operators invariant under

SU(3)C × SU(2)L × U(1)Y

standard model
� the SU(2)L × U(1)Y gauge symmetry appears to be

spontaneously broken and vector bosons get their masses by
eating a Goldstone boson, i. e. from a Higgs mechanism

� all current data are compatible with an elementary Higgs boson as
the source of the Goldstone bosons

� if and only if interpreted as a fundamental renormalizable field
theory, the data strongly favor a light Higgs boson

Th. Ohl (Würzburg) BSM Ambleside ’09 3

Introduction What have we seen?

� (cold) dark matter
∵ several independent observations (WMAP, rotation curves,

gravitational lensing, structure formation, &c.)
∴ very little wiggle room, any serious BSM model must leave room for

CDM candidates
� (almost all) neutrinos have mass

� structurally not really BSM, b/c we can always add right handed
singlets to obtain Dirac masses

∵ still: elegance of the seesaw mechanism(s) suggest Majorana
masses w/associated higher mass scale ≈ 1010 TeV

∴ lepton flavor violation (e. g. μ± → e±γ) not unlikely
� dark energy

� solid evidence (WMAP, type IA supernova), but no hot particle
physics candidates yet

� gravity
� the granddaddy of BSM physics
∴ there must be a new scale mPlanck � v (w/ mPlanck,4D = O(1016) · vF)

Th. Ohl (Würzburg) BSM Ambleside ’09 4
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Introduction What do most of us expect?

� Grand unification in some form is a central tenet of our discipline:
“stuff becomes simpler at high energies — for a suitable notion of
simple”, e. g. SU(3)C × SU(2)L × U(1)Y → SU(5)

� requires BSM physics — some even at the Terascale
∵ assume gauge and Yukawa coupling unification
∴ there should be yet another new high scale
∵ does not work w/a desert above vF = 254 GeV
∴ there should be yet another new threshold:
mPlanck � mthreshold > vF

� coexistence of widely separated scales raises naturalness
concerns
∵ if there is a new much higher scale, we should explain the origin

and stability of the lower scales
∴ new symmetries/particles for the protection of the EWSB scale
� caveat: viewed from the earth, the diameters of sun and moon

appear to very finely tuned (anthropic principle: no astronomy,
physics and higher mathematics w/o prediction of eclipses) . . .

∴ most fertile ground for Terascale BSM models to date . . .

Th. Ohl (Würzburg) BSM Ambleside ’09 5

Introduction What do some of us hope for?

� theoretical solution of the flavor problem
� number of generations
� mass and mixing hierarchies
� CP-violation

� observation of lepton flavor violation beyond ν-mixing
� do we owe our existence to leptogenesis?
� is there a seesaw mechanism?
� are there Majorana masses?

Th. Ohl (Würzburg) BSM Ambleside ’09 6
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Introduction What might take us by surprise?

� Occam’s razor might be dull: BSM physics can be a combination
some or all of the above

� nature is often more messy than we hope
∴ be prepared!

� there are examples for “strange” stuff that doesn’t fit nicely with
(most of) our orthodoxy:

� Unparticles
� did anybody anticipate these propagators?

� Noncommutativity
� Lorentz invariance is hardwired in our brains . . .

� nothing but the minimal SM plus an ad-hoc WIMP CDM candidate
would be the biggest surprise of all

Th. Ohl (Würzburg) BSM Ambleside ’09 7

Perturbative

Perturbative
All the Way Up To the Planck Scale

Th. Ohl (Würzburg) BSM Ambleside ’09 8
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Perturbative

� ironic: the ultimate new physics at LHC: the Higgs and nothing but
the Higgs — the first fine-tuned theory that we once “understood”!

� NB: the fine tuning of the cosmological constant Λ is worse, but
nobody(?) claims to understand it . . .

∴ current consensus: two options
� find a symmetry that protects the EWSB scale, and/or
� explain EWSB dynamically

� many scenarios allow to maintain our successful approach to new
physics all the way up to the Planck scale:

� new physics in contact interactions ∝ 1/m2
NP

� can be interpreted as new particles of mass mNP

� examples: Z ′, see-saw mechanism

Th. Ohl (Würzburg) BSM Ambleside ’09 9

Perturbative Supersymmetry

� for many (most?) SUSY is already contained in release 2.0 of the
Standard Model which will be launched after a few 10 fb−1 of LHC
collisions have been analyzed in 201x

� very well motivated and well studied extension of the SM
� ∃ rich set of tools (dedicated and multi purpose) available — often

very well tested in real applications
� ∃ multiple independent cross checked implementations of

constrained versions of the MSSM, extensions in the works
∵ perturbatively renormalizable field theory allows clean

factorization of tasks related to different scales, interfaces
available, in particular SLHAn

� couplings from spectrum generators
� scattering amplitudes from diagrammatic tools

∴ all-in-one packages for LO event samples feasible (new model
� MA-thesis)

Th. Ohl (Würzburg) BSM Ambleside ’09 10
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Perturbative Extended Higgs Sectors

� SUSY extensions of the SM require more than one Higgs doublet,
but more general Higgs representations do not require SUSY

� just demand that
� ρ ≈ 1 naturally
� FCNCs are naturally suppressed

� Glashow-Weinberg Criterion [’77] satisfied by 2HDM, w/mass
eigenstates in reach of collider experiments

� popular source of CP-violation
� many phenomenological studies
� implemented in most (all?) all-in-one packages

Th. Ohl (Würzburg) BSM Ambleside ’09 11

Nonperturbative

Perturbative
Up To the Terascale

(but not much further)

Th. Ohl (Würzburg) BSM Ambleside ’09 12
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Nonperturbative Extra Dimensions

� extra dimensions have been with us for a long, long time [Kaluza,
Klein ’21, ’26] and string theory made them a necessity at the
Planck scale

� Terascale extra dimensions became respectable in the late ’90s
[ADD ’98, RS ’99] (see also [Antoniadis ’90])

� XDs play many (sometimes incompatible) rôles in Terascale
particle physics

� real XD:
� can solve the hierarchy problem by a Terascale Planck mass
� introduce infinite Kaluza-Klein towers
� allow symmetry breaking by boundary conditions
� unitarize VV scattering by exchange of KK partners
� (ab)use the Xtra components of gauge fields as naturally light scalars

� metaphorical XD: symmetries in deconstructed dimensions
� holographical XD: powerful new description of strongly interacting

models using the (conjectured!) AdS/CFT correspondence

Th. Ohl (Würzburg) BSM Ambleside ’09 13

Nonperturbative Real XD

� all degrees of freedom in XD represented by infinite Kaluza-Klein
towers mn = n/R:

: Φ(x,y) =
∑
n∈Z

fn(y)φn(x)

� orbifolding: identify points in the XD, e. g. Φ(x,y) = Φ(x, 2π− y)

=⇒ : Φ(x,y) =
∑

n∈2Z

fn(y)φn(x)

� “odd” modes are projected out
� fixed points (e. g. y = 0,π) correspond to branes
∴ boundary conditions at the branes (fn(0) = 0, ∂zfn(0) = 0, etc.

Th. Ohl (Würzburg) BSM Ambleside ’09 14
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Nonperturbative Metaphoric XD

� replace continuous XD by discrete XD

=⇒

Φ(x,y) =⇒ {φn(x) = Φ(x, 2πn/N)}n=0,1,...,N−1

∴ finite dimensional representations of translation symmetry in XD
� can be combined with orbifolding, of course
� 5D gauge theory is equivalent to a collection of 4D gauged

nonlinear sigma models∫
dy

1
4

tr(FμνF
μν) ⇒ “lattice” ⇒ 1

4

N∑
n=1

tr(DμΦ
†(x,yn)DμΦ(x,yn))

� NB: one loop quadratic divergencies for uneaten goldstone
bosons cancel from remnant of translational symmetry!
Th. Ohl (Würzburg) BSM Ambleside ’09 15

Nonperturbative Holographic XD

� replace flat XD by warped XD:

y = 0 UV gμν = e−2Rkyημν y = πIR

� NB: warped XD play a dual rôle
� warp factor creates hierarchy m/M ≈ e−Rkπ

� if the AdS/CFT correspondence is correct, we can describe a
strongly coupled 4D theory by a dual weakly coupled 5D theory!

∴ the technicolor and composite Higgs models of the ’70s and ’80s
have been resurrected as models on AdS5!

� can be combined with deconstruction, of course

Th. Ohl (Würzburg) BSM Ambleside ’09 16
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Nonperturbative Little Higgs

� Little Higgs started life as deconstructed XD

∑
n

n

∝ Λ2 ·
∑

−N/2<n�N/2

cos
(

2π
n

N
+ φ

)
︸������������������������������������︷︷������������������������������������︸

=0

+g lnΛ

� can be reproduced by internal symmetry breaking pattern, e. g.

SU(5) → SO(5)

� drawbacks:
� hierarchy propblem merely postponed
� two loop contributions remain quadratically divergent:

Λ : 1 TeV → 10 TeV

Th. Ohl (Würzburg) BSM Ambleside ’09 17

Nonperturbative Higgsless Models (a. k. a. (E)TC)

� Randall-Sundrum started with only gravity in the bulk (motivation:
open string endpoints confined to D-branes)

� warp factor softens hierarchy from power to logarithm
� also: smallness of ρ− 1 (& other EW precision observables) not

natural in EWSB by boundary conditions in flat XD
� can be explained by similar exponential suppression of the

symmetry breaking sector [Csaki et al. ’03]

SU(2)L ×U(1)Y

UV
SM

SU(2)D ×U(1)X

IR

gravitySU(2)L × SU(2)R ×U(1)X

� couplings from overlap integrals in the extra dimension

Th. Ohl (Würzburg) BSM Ambleside ’09 18
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Nonperturbative XD w/SUSY

� even higgsless models must provide reasonable CDM candidates
∵ warp factors destroy Kaluza-Klein parity
∴ � stable Lightest KK Particle (LKP)
∴ some additional physics BSM required

� two branes with parity [Agashe et al. ’07, Panico et al. ’08]

IR1 IR2UV

� R-parity conserving SUSY in warped 5D [Knochel, TO ’08]
∵ SUSY well motivated to appear in UV completions of any effective

model, including higgsless models

Th. Ohl (Würzburg) BSM Ambleside ’09 19

Nonperturbative XD w/SUSY

� flat 5D N = 1 can be mapped to 4D N = 2
� N = 2 SUSY broken by warp factor, only one y-dependent global
N = 1 SUSY compatible with the metric (“killing spinors”)

ξ(y) = e−Rky/2
(
ξ0

α

0

)

∴ remaining degeneracy must be lifted by soft breaking
� most elegantly by boundary conditions on the UV-brane

SUSY
SUSY

SUSY
SU(2)L ×U(1)Y

UV

SU(2)D ×U(1)X

IR

SU(2)L × SU(2)R ×U(1)X

Th. Ohl (Würzburg) BSM Ambleside ’09 20
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Nonperturbative XD w/SUSY

� spectrum of gauge bosons and matter together with KK and
SUSY partners:

� couplings of the heavy gauge scalars (“sgauginos”),

≈ mf , ≈ 0

∴ Higgs-like w/o vector boson fusion
Th. Ohl (Würzburg) BSM Ambleside ’09 21

Nonperturbative XD w/SUSY

� estimate neutralino relic density freezeout at ≈ mχ/20

1/Ωh2 ∝ 〈vσ(χχ→WW)〉 + 〈vσ(χχ→ ff)〉︸��������������︷︷��������������︸
≈0 for mχ<mt, mχ�mf̃

� Very good agreement with current WMAP data possible

Th. Ohl (Würzburg) BSM Ambleside ’09 22
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Nonperturbative The Sgaugino Σ0

� scalar Σ as N = 2 partner of the gauge bosons
� no ΣAμAμ interaction =⇒ no Vector boson fusion
∵ Interaction with fermions LΣff̄ = g 1

(k z)5χ(Σ0 + iA5)η+ h. c.

y0
eff ∝ 〈Σ0ηLχL〉 + 〈Σ0ηRχR〉

{
mf = 0 : ηR = χL = 0
mf > 0 : contributions from ηR,χL

∴ y0
eff grows with fermion mass, similar to SM Higgs: y0

eff ≈ yH
3

∴ Σ0 production similar to SM

t

t

t

Σ0

t

Σ0

t̄

∵ However: the sfermion partners of SM fermions are projected out
by boundary conditions

∴ (potentially) large mass corrections
f
(n)
i

f
(m)
i f̃

(n)
i

Th. Ohl (Würzburg) BSM Ambleside ’09 23

Nonperturbative LHC

� tree level contributions to associated heavy quark and LSP pair
production with a qq initial state.

gn

t̃, b̃

q

q

χ0

t,b

χ0

t,b

gn

tn, bn

t̃n, b̃n

q

q

t,b t,b

χ0

χ0

χ0,n

q̃

t̃n, b̃n

q

q

χ0

t,b

χ0

t,b

q

gn

q̃

q

q

t,b

t,b

χ0

χ0

Th. Ohl (Würzburg) BSM Ambleside ’09 24
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Nonperturbative LHC

� tree level contributions to associated heavy quark and LSP pair
production with a gg initial state.

t̃, b̃

g

g

χ0

t,b

χ0

t,b

g

g

χ0

t,b

χ0

t,b

t̃, b̃

g

g

χ0

t,b

χ0

t,b

g

g

χ0

t,b

χ0

t,b

t, b

t̃, b̃

g

g

t,b

χ0

χ0

t,b

g

g

t,b

χ0

χ0

t,b

Th. Ohl (Würzburg) BSM Ambleside ’09 25

Nonperturbative LHC

� Model implemented by in WHIZARD [Kilian/TO/Reuter]
� commercial break:

� fully automated Monte Carlo event generator generator (emphasis
on BSM physics, w/and w/o SUSY)
http://whizard.event-generator.org (or hepforge.org)

� α-Version of Version 2 recently completed (still working out
Fortran 2003 compiler kinks)

� hadron colliders no longer an afterthought (Version 1 sometimes
revealed its TESLA/ILC origins)

� Kinematic cuts
Variable I II.1 II.2 II.3

PT (q),PT (q) - > 100 GeV > 300 GeV > 100 GeV
Δφ(q,q) - - - [0, 140◦]

II.3 suppress SM background with back-to-back tt̄ pairs

Th. Ohl (Würzburg) BSM Ambleside ’09 26
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Nonperturbative LHC

� Missing energy in neutralino LSP pair production in association
with top pairs (SM background: ννtt)):

P/ T /TeV

d
N

/
d

E
(1

/
G

eV
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8  2

P1c (N=17404)
P1a (N=11084)
P1b (N= 4355)
P2 (N= 2671)
SM (N=14396)

200 fb−1 @ 14 TeV

Cuts II.1

pp → χ0χ0tt

P/ T /TeV

d
N

/
d

E
(1

/
G

eV
)

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8  2

P1c (N= 7508)
P1a (N= 5265)
P1b (N= 1952)
P2 (N= 1554)
SM (N= 1702)

200 fb−1 @ 14 TeV

Cuts II.2

pp → χ0χ0tt

P/ T /TeV

d
N

/
d

E
(1

/
G

eV
)

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8  2

P1c (N= 5479)
P1a (N= 3563)
P1b (N= 1474)
P2 (N=  898)
SM (N= 2040)

200 fb−1 @ 14 TeV

Cuts II.3

pp → χ0χ0tt

P/ T /TeV

d
N

/
d

E
(1

/
G

eV
)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  0.2 0.4 0.6 0.8  1  1.2 1.4 1.6 1.8  2

P1a quarks
P1b quarks

200 fb−1 @ 14 TeV

Cuts II.2

pp → χ0χ0tt
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EFT

Model Independent EFT Approach

Th. Ohl (Würzburg) BSM Ambleside ’09 28



P
o
S
(
L
C
P
S
2
0
0
9
)
0
0
3

EFT Chiral Lagrangian

� Most conservative approach:
� use only observed degrees of freedom
� implement observed exact and broken symmetries
∴ effective chiral Lagrangian for SUL(2)×SUR(2) → SUC(2) breaking

L =
1
4

tr ([Dμ,Dν][Dμ,Dν]) +
v2

F

2
tr (DμUD

μU) + . . .

� dependence of VV → VV and VV → tt̄ scattering on dim-4
operators

studied for ILC (e+e− → 6f/8f) and LHC (pp→ 6f/8f)

Th. Ohl (Würzburg) BSM Ambleside ’09 29

EFT VV → VV Below Threshold

� custodial SU(2)c conserving:

L4 = α4 tr [VμVν] tr [VμVν]

L5 = α5 tr [VμV
μ] tr [VνV

ν]

where Vμ = U†DμU

σ [fb]

e+e− → ν̄νW+W−

±1σ [α4, α5 = 0]

[α4 = 0, α5]

−0.005 0 0.005
0

2

4

6

8

Th. Ohl (Würzburg) BSM Ambleside ’09 30
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EFT VV → VV Below Threshold

� our 1997 Dream Machine could probe α4,5 at the “magic”
O(10−3) � 1/(16π2) suggested by naive dimensional analysis

e+e− → ν̄νW+W−

e+e− → ν̄νZZ

e−e− → ννW−W−

90% c.l.

√
s = 1.6 TeV∫ L = 500 fb−1

100%/50% pol.

α5

−0.005

0

0.005

−0.005 0 0.005

α4

Th. Ohl (Würzburg) BSM Ambleside ’09 31

EFT VV → VV Below Threshold

� custodial SU(2)c violation:

L6 = α6 tr [VμVν] tr [TVμ] tr [TVν]

L7 = α7 tr [VμV
μ] tr [TVν] tr [TVν]

where T = Uτ3U
†.

e+e− → e+νZW−

e+e− → ν̄e−W+Z

e+e− → ν̄νZZ
√

s = 1.6 TeV∫ L = 500 fb−1

100%/50% pol.

α7

−0.005

0

0.005

−0.01 0 0.01

α6

Th. Ohl (Würzburg) BSM Ambleside ’09 32
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Who Ordered That?

Who Ordered That?

Th. Ohl (Würzburg) BSM Ambleside ’09 33

Who Ordered That? Noncommutative Space Time

� Quantum mechanics: measurements of coordinate and
momentum are complementary

Δxi · Δpj � �h/2 · δij

More formal: the corresponding operators don’t commute

[xi,pj] = xipj − pjxi = i�hδij

� Currently no exp. evidence for complementary coordinate pairs:

Δxμ · Δxν
?
= 0 ⇔ [xμ, xν]

?
= 0

� nevertheless
[x̂μ, x̂ν] = iθμν = i

Cμν

ΛNC
2

possible, as long as characteristic energy scale ΛNC large and
corresponding minimal area in the eμ ∧ eν-plane

aNC = l2NC = 1/Λ2
NC

small compared to the resolution of present experiments.
Th. Ohl (Würzburg) BSM Ambleside ’09 34
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Who Ordered That? Noncommutative Space Time

Why is it interesting?
� Fundamental length scale

� xμ-continuum ⇒ lattice of eigenvalues of operators x̂μ

(lattice constant ∼ 1/ΛNC) [Snyder, Wess]
� smooth cut off of some divergent contributions E > ΛNC in quantum

gravity (cf. �h and black body radiation)
∵ internal and space-time symmetries do not commute any more
∴ richer symmetry structure

� String theory
� NCQFT is low energy limit of certain string theories

[Seiberg, Witten]
� more than 2000 citations for a single paper written in 1999 . . .
� no prediction for the value of ΛNC

� special (simplest) case: θμν constant 4 × 4-matrix:

[x̂μ, x̂ν] = iθμν = i
1
Λ2

NC
Cμν = i

1
Λ2

NC

⎛
⎜⎜⎝

0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

⎞
⎟⎟⎠

Th. Ohl (Würzburg) BSM Ambleside ’09 35

Who Ordered That? Noncommutative Space Time

� simpler, but equivalent realization: replace all point products of
functions of noncommuting coordinates

(f · g)(x̂) = f(x̂)g(x̂)

by Moyal-Weyl-∗-products of functions of commuting coordinates:

(f∗g)(x) = f(x)e
i
2
←−
∂μθμν

−→
∂ν
g(x) = f(x)g(x)+

i
2
θμν

∂f(x)

∂xμ

∂g(x)

∂xν
+O(θ2)

� then (xμ∗xν)(x) = xμxν + i
2θμν and in particular

[xμ
∗, xν](x) = (xμ∗xν)(x) − (xν∗xμ)(x) = iθμν

� new interaction vertices among gauge and matter fields from
expanding Moyal-Weyl-∗-products and Seiberg-Witten-Maps as
determined by gauge invariance

g( ¯̂ψ∗ /̂A∗ψ̂)(x) = gψ̄(x)/A(x)ψ(x) + O(θ)

Th. Ohl (Würzburg) BSM Ambleside ’09 36
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Who Ordered That? Noncommutative Space Time

� e. g. at O(θ) with all momenta outgoing

= ig · i
2

[(kθ)μ/p+ (θp)μ/k− (kθp)γμ]

= ig2 · i
2

[
(θ(k1 − k2))μ1γμ2 − (θ(k1 − k2))μ2γμ1

−θμ1μ2(/k1 − /k2)

]

� canonical NC extension of the SM known to O(θ2)

Th. Ohl (Würzburg) BSM Ambleside ’09 37

Who Ordered That? Noncommutative Space Time

standard acceptance cuts and 85 GeV < m	+	− < 97 GeV,
200 GeV < m	+	−γ < 1 TeV, 0 < cos θ∗γ < 0.9,
cos θZ > 0 and cos θγ > 0 (favoring q̄q over qq̄!)

NCSM
SM LHC :

∫
L = 100 fb−1,

√
s = 14 TeVLHC :

∫
L = 100 fb−1,

√
s = 14 TeV

ΛNC = 0.3 TeV, �E = (1, 0, 0)

(KZγγ, KZZγ) = (0.095, 0.155)
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Who Ordered That? Noncommutative Space Time

likelihood fits for ΛNC = 500 GeV [Alboteanu, T. O., Rückl, PRD74]
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� only the expected kinematical correlations of (E1,B2) and (E2,B1)

∴ ΛNC � 1 TeV can be easily probed at the LHC
� unfortunately, hard to reconcile with Lorentz violation bounds from

atomic physics and astronomy
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Facts of Life . . .

∵ Light fermions couple very weakly to the Electroweak Symmetry
Breaking sector

� Standard Model Yukawa Couplings

L ⊃ mf

vF
Hψ̄fψf =⇒ dσ

dΦ
(ff̄→ H) ∝ m2

f

v2
F

� generically in any chiral Effective Field Theory description

L ⊃ mfψ̄f exp
(

i
Φ

vF

)
ψf =⇒ dσ

dΩ
(ff̄→ Φ) ∝ m2

f

v2
F

∴ cross sections for the direct excitation of the EWSB sector
at LHC (u,d) and ILC (e±) are strongly suppressed
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Facts of Life . . . . . . a LEP Legacy . . .

∵ couplings of all fermions except top have been measured very
precisely at LEP 1

Z

e+

e−

�−,ν,q

�+, ν̄, q̄

∵ all observed Flavor Changing Neutral Currents can be explained
by penguin and box diagrams

∴ new particles in models of any new physics are very likely to be
fermiophobic (with an exception for top quarks)
direct production cross sections for new gauge bosons &c. at ILC
and LHC strongly suppressed again!

∴ new physics appears to suffer from fermiophobia!
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Facts of Life . . . . . . & a Way Out . . .

∴ produce excitations of the EWSB sector (e. g. Higgs bosons) in
association with heavy particles (i. e. m = O(vF)) via their known
gauge couplings

� e. g. top-quarks

e+

e−

t

Φ

t̄

� or W and Z bosons

at a 500 GeV LHC, the cost of producing an additional tt̄-pair
pushes it back to the threshold of a light Higgs:

500 GeV − 2mt = 150 GeV

� LHC advantage: colored new physics must have a large cross
section in gluon-gluon scattering

� NB: guaranteed by universality of the strong coupling
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Facts of Life . . . . . . Vector Boson Fusion

� Trick: generate almost real massive gauge bosons (W± and Z)
with known gauge couplings by bremsstrahlung off light fermions
and let them scatter

� cross section suppressed by additional gauge couplings

(α
π

)2
≈ 5 · 10−6

� but enhanced by (
mW,Z

me

)2

≈ 3 · 109

net gain of O(103)

drawback: lower energy available in the CMS of the vector
bosons, because of soft bremsstrahlung spectrum (see below)
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Facts of Life . . . Higgsstrahlung vs. VBF

� upper Higgs mass reach of linear collider dominated by
Vector Boson Fusion:

e+e− → H + neutrinos
σ[fb]
√

s = 500 GeV

tot

Higgs-
strahlung

+intf

WW fusion−intf

thr

350 400 450
0.01

0.1

1

10

mH [GeV]

Th. Ohl (Würzburg) BSM Ambleside ’09 44



P
o
S
(
L
C
P
S
2
0
0
9
)
0
0
3

Conclusions

� 1990s: LEP enforced triumph of the minimal standard model
� 2000s: theorists running wild due to lack of supervision from

experimentalists: plethora of new and repackaged BSM models
� 2010s: LHC

� will most of the content of arXiv.org be obsolete soon, or
� will we have to come up with completely new ideas?

� 2020s: ILC/CLIC: Will the fog be lifted?
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