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1. Introduction

The physics programme of a future linear collider (LC) with centre-of-mass energy of several
hundred GeV is extremely rich. Among the large number of vitally important measurements that
could be done at such a collider, this article focusses on oneparticular one, thett̄ threshold scan [1].
In the same way that critical information about the charm andbottom quarks has been obtained by
considering the processe+e− → hadrons at

√
s ≃ 2mc and

√
s ≃ 2mb respectively, measurements

of the top quark massm and its widthΓ with unprecedented accuracy could be made using the
processe+e− → tt̄ at

√
s ≃ 2m. The reason why the threshold region is particularly interesting is

the following: slightly below threshold, i.e. for
√

s < 2m, there is not enough energy to create a
top quark pair, whereas above threshold, i.e. for

√
s > 2m, a top quark pair can be created. Thus,

in the threshold region the cross section for producing a toppair varies very strongly. With precise
theoretical input matched to a precise measurement it is therefore possible to extract information
about the top quark that cannot be obtained by any other means.

Because the top quarks plays a special role in most extensions of the Standard Model, a precise
determination of its parameters are particularly important. We will first discuss how to determine
m andΓ from a threshold scan. Given that this is a lecture for a summer1 school, I will spend
most of my time explaining in quite some detail the basic idea, followed by only a short overview
of the current status of the theory and no attempt is made to give a complete list of references.
After the discussion of the threshold scan I also briefly mention a possible measurement of the
Yukawa coupling of the top. Finally we conclude by making a quick comparison to top quark pair
production at the LHC.

2. Top threshold scan

The quantity we will mainly be concerned with is theR ratio, which is nothing but the cross
sectionσ(e+e− → tt̄) normalized for convenience byσ(e+e− → µ+µ−). To computeR naively
at leading order, we have to calculate a singles-channel diagrame+e− → γ∗ → tt̄, square it and
integrate the result over the two-body phase space. We find

R(0) =
3
2

Nc e2
t β
(

1− β2

3

)

(2.1)

whereet = 2/3 is the electric charge of the top,Nc = 3 is a colour factor and the velocity of the
top is given byβ =

√

1−4m2/s. Of course, there is also the process where the photon is replaced
by aZ boson. However, since we are considering theR ratio at leading order, this does not change
Eq. (2.1). The process where the photon is replaced by a Higgsdoes not contribute because we
consider the electrons to be massless. Hence they do not couple to the Higgs boson.

Considering Eq. (2.1) we note that near threshold the termβ2/3≪ 1, sinceβ → 0 in the limit√
s → 2m. Hence near threshold this term can be neglected. While it seems pointless to do this,

these simplifications become crucial when going to higher orders. The corresponding technical
simplifications will allow us to resum a certain class of contributions to all orders in the strong
couplingαs. But we have to keep in mind that (far) above thresholdβ → 1 and the second term

1Or whatever goes under the name “summer” in the Lake District.

2



P
o
S
(
L
C
P
S
2
0
0
9
)
0
0
4

Top@ILC Adrian Signer

in Eq. (2.1) is as important as the first. Finally we note that an alternative way to obtain Eq. (2.1)
is to consider the one-loop forward scattering amplitudee+e− → γ∗ → tt̄ → γ∗ → e+e−. Ignoring
the trivial electroweak parte+e− → γ∗ this is nothing but the photon vacuum polarization with a
top quark loop. According to the optical theorem, the imaginary part of the forward scattering
amplitude equals the total cross section up to a trivial prefactor.

The usual procedure for improving the theoretical result isto compute higher order correc-
tions. At next-to-leading order (NLO) inαs we either have to add the separately divergent virtual
corrections forγ∗ → tt̄ and real correctionsγ∗ → tt̄g, or compute the forward scattering amplitude
at O(αs). This has been done a long time ago [2]. The precise form of theresult is not important
for us, but schematically it reads

R(1) = R(0)

(

1+αs

[

∼ 1
β

+cst+β2 logβ + . . .

])

(2.2)

What is important is that at NLO we would find corrections thatbehave asαs/β . The problem
with these terms is that in the regionβ → 0 they are not small compared to 1, i.e. the NLO terms
are not small compared to the LO terms. If we were to compute even one order higher, i.e. at
O(α 2

s ) we would find corrections of the formα 2
s /β2 which cause the same problem. On top of

this, we would also find terms of the formα 2
s logβ . While these terms are not quite as bad they

can still be dangerous in the sense that for smallβ the large logarithm logβ can compensate the
small couplingαs. In Eq. (2.2) the corresponding term is harmless as it appears with a factorβ2

but beyond NLO potentially large logarithms are present. Tosummarize, a strict order by order in
αs approach is fine if we are (far) above threshold, i.e.β ≃ 1, but in the threshold region such an
approach completely fails.

To get a meaningful theoretical result in the threshold region we have to reorganize the pertur-
bative series and perform a double expansion. That is we do not only expand in the small coupling
αs but also in the smallβ and for the purpose of counting the order we setαs ≃ β ≪ 1. The
perturbative series then looks like

R = β ∑
n

(
αs

β

)n

×
(

1
︸︷︷︸

LO

+
[
∼ αs, β
︸ ︷︷ ︸

NLO

]
+
[
∼ α 2

s , β2, αsβ
︸ ︷︷ ︸

NNLO

]
+ . . .

)

(2.3)

In this context the LO result takes into account theO(α 0
s β1) term of Eq. (2.1), theO(α 1

s β0) term
of Eq. (2.2) as well as all terms of the formO(α n

s β1−n). NLO terms are suppressed w.r.t. the LO
result by one small factor, eitherαs or β . Correspondingly, NNLO terms are suppressed by any
combination of two small factors and so on and from now on we always mean this when referring
to the order of the perturbative expansion.

For a LO computation in the threshold region we have to sum infinitely many terms. At each
order in αs we have to take the leading term in 1/β . To do this in a systematic way we have
to use an effective theory approach. A detailed discussion of such an approach is well beyond
the scope of this lecture (see e.g. Ref. [3]) but I will try to give an idea how this works in what
follows. The main idea is to exploit the hierarchy of scales.In the threshold region, the top quarks
are non-relativistic, i.e. their kinetic energyE is much smaller than their mass. Thus we have
E ∼ mβ2 ≪ ~p ∼ mβ ≪ m, where~p is the momentum of the top. Let us now consider how this can
be used to study the interaction of two heavy non-relativistic quarks.
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From a quantum field theory point of view the quarks interact by exchanging gluons. Using
Feynman rules for the corresponding diagram atO(αs) shown in panel(a) of Figure 1 we obtain

−iM (0) = 4παs C ū(p−q)γµu(p)⊗ v̄(p′)γν v(p′ + q)
−i
q2

(

gµν − (1− ξ )
qµqν

q2

)

(2.4)

whereξ is the gauge parameter,q is the exchanged momentum andC is a colour factor. If the
quarks are in a colour singlet state (e.g. created from a photon) we haveC = CF = 4/3 whereas in
an colour octet state we haveC =CF −Nc/2=−1/6. In the centre-of-mass frame of the quark pair
the momenta of the quarks are given byp = (m + E,~p) and p′ = (m + E ′,−~p) with ~p ∼ ~p′ ∼ mβ
andE ∼ E ′ ∼ mβ2. To ensure that the quarks are still non-relativistic afterthe exchange of the
gluon with momentumq we needq0 ∼ mβ2 and~q ∼ mβ . A field with momentum that scales
in such a way is called a potential field. Using all the information we have we can simplify the
expression given in Eq. (2.4). First we note that theξ -dependent terms vanish due to the Dirac
equation. Secondly we useq2 ∼ −~q2 becauseq0 ≪~q. Finally we note that ¯uγ0u ∼ 1+O(1/m2)

whereas ¯u~γu ∼ ~p/m ∼ β (and similarly forv spinors). Thus the leading part of the interaction does
not know anything about the spin of the quarks. This is familiar from the hydrogen atom where the
leading interaction is spin independent. Putting everything together Eq. (2.4) simplifies to

M
(0) = 1⊗1

−4παs C

~q2 (2.5)

Thus in the colour singlet case the leading term from the exchange of a single potential gluon results
in an interaction term−4παs CF/~q2 whose Fourier transform is−αsCF/r with r = |~r|. This is the
QCD version of the Coulomb potential (hence the name potential gluon).

. . .

(a) (b) (c)

q

Figure 1: (a) exchange of a single gluon between non-relativistic quarks; (b) ladder diagram with multiple
exchange of potential gluons, corresponding to LO potential of non-relativistic quarks; (c) some of the
diagrams contributing to the NLO correction to the potential of non-relativistic quarks.

To understand what happens if several potential gluons are exchanged it is convenient to go to
coordinate space. In fact we can now write down the Scrödinger equation

(

−
~∇ 2

m
− CF αs

r
−E − iΓ

)

Gc(~r;E) = δ(3)(~r) (2.6)

for the Coulomb Green functionGc which includes the Coulomb potential to all orders. We also
take into account the width of the top quark. Using our counting rules we note that all terms are
of the same order:~∇ 2/m ∼ ~p2/m ∼ β2, αs/r ∼ αs~p ∼ αsβ , E ∼ β2 and counting the electroweak
coupling2 asα ∼ α 2

s we also haveΓ ∼ α m ∼ β2. Thus we cannot treat the exchange of potential

2This counting is motivated simply from a numerical point of view.
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gluons in a perturbative way. We have to solve Eq. (2.6) exactly, taking into account multiple
potential gluon exchange. In fact this resums the terms of orderO(α n

s β1−n) mentioned before and
corresponds to the sum of diagrams shown in panel(b) of Figure 1.

The solution to Eq. (2.6) is essentially the well-known solution for the hydrogen atom and can
for example be written as

Gc(~r;E) =
m
√
−mĒ
2π

e−r
√
−mĒ

∫ ∞

0
dτ e−2r

√
−mĒ τ

(
1+ τ

τ

)λ
(2.7)

with λ ≡CFαs/(2
√

−Ē/m) andĒ ≡ E + iΓ. However, we needGc for~r = 0, since the imaginary
part of Gc(0;E) via the optical theorem is related to the total cross section. But at~r = 0 the
Coulomb Green function has an ultraviolet singularity. Indeed, after setting~r → 0 in Eq. (2.7) theτ
integration results in a divergence. In order to deal with this we have to work in momentum space.
Fortunately the ultraviolet singularity is restricted to the first two terms of the expansion ofGc in
αs. Therefore we can compute these terms in momentum space and combine the result with the
well-known result forGc for all higher orders inαs. The result is

Gc(0;E) = −αsCF m2

4π

(

− 1
4ε̄

+
1

2λ
+

1
2

log
−4mĒ

µ2 − 1
2

+γE +ψ(1−λ )

)

(2.8)

where 1/ε̄ = 1/ε + log(4π)− γE is the dimensionally regulated ultraviolet singularity with the
corresponding scaleµ . The cross section is proportional to the imaginary part ofGc

R =
6πe2

t Nc

m2 ImGc(0,E) (2.9)

and thus is not affected by the ultraviolet singularity. However it contains terms to all orders in
αs with αs always appearing in the combinationλ ∼ αs/β . The termsO(α n

s β1−n) have been
resummed. Note also that even strictly at threshold,E = 0 the result is well defined. This is due to
the width of the top, but would actually even hold if the widthwas negligible as is the case for the
bottom quark.

If we were to plot Eq. (2.9) as a function ofE we would obtain a result similar to the LO
curves in Figure 2. Below threshold the cross section rapidly vanishes. Around threshold there
is a peak due to the fact that the two top quarks try to form a bound state (similar to theϒ in the
bottom case). However, due to the large width the tops decay before they can form a bound state.
If we decreaseΓ, the peak becomes higher and thinner and in the limitΓ → 0 we would find delta
peaks below threshold, corresponding to bound states. Thisobservation leads directly to a simple
method for a precise determination ofm andΓ, roughly speaking by measuring the position and
the width of the peak. Of course, in a real experiment the curves would look rather different due to
bremsstrahlung and other effects. However, a detailed analysis shows that a precise measurement
of m with an error ofδm ∼ 20−50 MeV andΓ with an error ofδΓ ∼ 30 MeV is still possible [4].

With such a high precision inm great care has to be taken to use a suitable definition of the
mass. In particular, to achieveδm . ΛQCD ≃ 200 MeV we have to abandon the pole mass. The
reason is that the pole mass has an ambiguity of orderΛQCD in perturbation theory. This can be
understood by considering a quark-antiquark meson. The mass of the meson is given by twice the
pole mass of the quark minus the binding energy. Being a physical quantity, the mass of the meson

5
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is well defined. However, due to non-perturbative effects, the binding energy has an ambiguity
∼ ΛQCD in perturbation theory. This entails that the pole mass musthave the same ambiguity such
that the effect cancels for the meson mass. Therefore we haveto use a so-called short-distance
threshold mass. The word short-distance refers to the absence of non-perturbative ambiguities and
there are several possible definitions [5].
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Figure 2: Threshold scan for top pair production near threshold up to NNLO, without (left panel) and with
(right panel) resummation of logβ terms. The results and plots are taken from Ref. [7].

The result Eq. (2.8) is of course not the full story but corresponds only to the LO result ac-
cording to Eq. (2.3). To go beyond we have to take into accounthigher-order corrections to the
Coulomb potential as well as corrections higher order inβ . The latter will contain relativistic
corrections and spin dependent corrections familiar from the hydrogen atom. The potentials can
be computed in momentum space, in principle to any order, by computing Feynman diagrams.
Some diagrams contributing at NLO are shown in panel(c) of Figure 1. In general divergences are
encountered that are regulated using dimensional regularization. Once the potential is known, stan-
dard quantum mechanics perturbation theory can be used to compute higher-order corrections to
Gc. This program has been carried out up to NNNLO [8]. In the leftpanel of Figure 2 we show the
results at LO, NLO and NNLO for various scale choices. The variation of the result with the scale
µ is an indication on how reliable the theoretical predictionis. The scale dependence is still rather
large at NNLO, indicating large corrections and a rather poor convergence. This poor convergence
can partly be understood by recalling the presence of potentially large logβ terms. In fact these
terms can be resummed as well [6, 7] and this improves the convergence substantially, as shown in
the right panel of Figure 2. On the other hand there are also large non-logarithmic corrections and
a full exploitation of future experimental data would require additional theoretical work. In this
context it should also be mentioned that the electroweak decay of the top is not properly taken into
account in the current calculations.

3. Top-Higgs Yukawa coupling

If the mass of fermions is generated through the Higgs mechanism there is a close relation
between the mass of a fermion and the strength of its couplingto the Higgs. Because the top has
a Yukawa coupling that is very close to its natural valueyt ∼ 1, the top is the prime candidate for
this test. Ideally we would measure the top-Higgs Yukawa coupling with the same precision as the

6
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mass. Unfortunately such a precision is well beyond what canbe achieved, but there are (at least)
two ways to measureyt at a LC.

The first uses once more the threshold scan. The potential between the top quarks also receives
a contribution from the exchange of a Higgs bosonδV = −y2

t e−mH r/((4π)2r). This potential is
much smaller than the usual QCD potential, but since the latter has been taken into account to a
very high precision, a very precise experimental determination of the cross section in the threshold
region could be used to determineyt . However, this measurement hinges on a careful assessment of
other (small) contributions of similar size and theoretical uncertainties. At this moment it is difficult
to estimate to what precision a measurement could be made, but in the literature a precision of 35%
for yt has been mentioned [4].

Another option is to measureyt more directly by consideringtt̄H production. This is similar
to what is done at a hadron collider. The cross section is obviously proportional toy2

t and if it can
be measured precisely enough it leads to a determination ofyt . The advantage of using a LC rather
than the LHC is that potentially a better precision can be obtained. On the other hand the process
requires a large centre-of-mass energy

√
s of the collider which is not much of an issue at the LHC.

The precision with whichyt can be measured at a LC crucially depends on the Higgs mass and√
s. As an example, if the Higgs mass is in the expected range 120 GeV < mH < 170 GeV at a√
s = 800 GeV linear collideryt can be measured with a precision better than 10% [9].

4. Top pairs at LHC

At the LHC the main production mechanism for top pair production is through the process
gg → tt̄ with qq̄ → tt̄ playing a smaller role. The top quark pairs a produced eitherin a colour
singlet or in a colour octet state. Computingσ̂ (1)

tt̄ , the total partonic cross section to NLO inαs we
schematically find [10]

σ̂ (1)
tt̄ = σ̂ (0)

tt̄

(

1+αs

[

∼ 1
β

+ ∼ log2 β + ∼ logβ +cst
])

(4.1)

which has very similar features as Eq. (2.2). The potentially large logarithms have been resummed
quite a while ago [11] but, somewhat surprisingly, theαs/β terms have been resummed only re-
cently [12]. The results are shown in Figure 3. For the coloursinglet component, the result is very
similar to the results obtained withe+e− in the initial state. The colour octet contribution however
behaves differently. Because the colour factor has a different sign, the colour octet potential is not
attractive and therefore cannot give rise to a bound state. In the top case this means there is no
bump from a would-be bound state. Very close to threshold thecolour singlet is dominant, but
soon the octet contribution becomes more important.

At a hadronic collider the partonic cross sectionσtt̄ has to be folded with parton distribution
functions. Furthermore it is very difficult to measure the invariant mass of the top pairs to a high
precision. As a result it is very unlikely that the top width can be measured, despite the nice peak
in the total partonic cross section. However, the top quark mass can of course be measuread at the
LHC and in fact has been measured at the Tevatron. The main method to do this is by considering
the invariant mass of the decay products of the top. Another option, more similar to what would
be done at a LC, is to measure the cross section very preciselyand use its dependence onm for
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Figure 3: Invariant mass distribution for the colour singlet and octet partonic cross section at the LHC with√
s = 10 TeV (left panel) and

√
s = 14 TeV (right panel). The results and plots are taken from Ref. [12].

a determination of the mass. However, both methods have – by the standards of a linear collider
measurement – relatively large inherent uncertainties andit is very difficult to see how at a hadron
collider a measurement ofm with a precision better thanδm ∼ Γ ∼ 1.5 GeV can be made.

References

[1] V. S. Fadin and V. A. Khoze, JETP Lett.46, 525 (1987) [Pisma Zh. Eksp. Teor. Fiz.46, 417 (1987)];
V. S. Fadin and V. A. Khoze, Sov. J. Nucl. Phys.48, 309 (1988) [Yad. Fiz.48, 487 (1988)].

[2] A. O. G. Kallen and A. Sabry, Kong. Dan. Vid. Sel. Mat. Fys.Med.29N17 (1955) 1.

[3] N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys.77 (2005) 1423
[arXiv:hep-ph/0410047].

[4] M. Martinez and R. Miquel, Eur. Phys. J. C27 (2003) 49 [arXiv:hep-ph/0207315].

[5] I. I. Y. Bigi, M. A. Shifman and N. Uraltsev, Ann. Rev. Nucl. Part. Sci.47, 591 (1997)
[arXiv:hep-ph/9703290];
M. Beneke, Phys. Lett. B434, 115 (1998) [arXiv:hep-ph/9804241];
A. H. Hoang, Z. Ligeti and A. V. Manohar, Phys. Rev. Lett.82, 277 (1999) [arXiv:hep-ph/9809423].

[6] A. H. Hoang, A. V. Manohar, I. W. Stewart and T. Teubner, Phys. Rev. Lett.86, 1951 (2001)
[arXiv:hep-ph/0011254];

[7] A. Pineda and A. Signer, Nucl. Phys. B762 (2007) 67 [arXiv:hep-ph/0607239].

[8] M. Beneke, Y. Kiyo and K. Schuller, PoSRADCOR2007 (2007) 051 [arXiv:0801.3464 [hep-ph]].

[9] A. Gay, Eur. Phys. J. C49 (2007) 489 [arXiv:hep-ph/0604034].

[10] P. Nason, S. Dawson and R. K. Ellis, Nucl. Phys. B303 (1988) 607.

[11] R. Bonciani, S. Catani, M. L. Mangano and P. Nason, Nucl.Phys. B529 (1998) 424 [Erratum-ibid. B
803 (2008) 234] [arXiv:hep-ph/9801375].

[12] Y. Kiyo, J. H. Kuhn, S. Moch, M. Steinhauser and P. Uwer, Eur. Phys. J. C60 (2009) 375
[arXiv:0812.0919 [hep-ph]].

8


