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1. Introduction

The physics programme of a future linear collider (LC) withntre-of-mass energy of several
hundred GeV is extremely rich. Among the large number ofllyiienportant measurements that
could be done at such a collider, this article focusses ompartecular one, thé threshold scan [1].

In the same way that critical information about the charm laotitom quarks has been obtained by
considering the procegs' e — hadrons at/s~ 2m; and./s ~ 2m, respectively, measurements
of the top quark mase and its widthl" with unprecedented accuracy could be made using the
procese’e — tt at,/s~ 2m. The reason why the threshold region is particularly irgtng is

the following: slightly below threshold, i.e. foy’s < 2m, there is not enough energy to create a
top quark pair, whereas above threshold, i.e.\f@> 2m, a top quark pair can be created. Thus,
in the threshold region the cross section for producing gtopvaries very strongly. With precise
theoretical input matched to a precise measurement it ieftire possible to extract information
about the top quark that cannot be obtained by any other means

Because the top quarks plays a special role in most extengfahe Standard Model, a precise
determination of its parameters are particularly impdrtake will first discuss how to determine
m andl” from a threshold scan. Given that this is a lecture for a surhsehool, | will spend
most of my time explaining in quite some detail the basic jdelowed by only a short overview
of the current status of the theory and no attempt is madevio ajicomplete list of references.
After the discussion of the threshold scan | also briefly ioena possible measurement of the
Yukawa coupling of the top. Finally we conclude by making &kwwomparison to top quark pair
production at the LHC.

2. Top threshold scan

The quantity we will mainly be concerned with is tReratio, which is nothing but the cross
sectiong(ete” — tt) normalized for convenience hy(ete~ — u™u~). To computer naively
at leading order, we have to calculate a singtshannel diagranete~ — y* — tt, square it and
integrate the result over the two-body phase space. We find

0 _3 B
RO = 2Ncet23 <1 3> (2.1)

whereg = 2/3 is the electric charge of the top. = 3 is a colour factor and the velocity of the
top is given byB = /1 —4m?/s. Of course, there is also the process where the photon &scegpl
by aZ boson. However, since we are consideringRratio at leading order, this does not change
Eqg. (2.1). The process where the photon is replaced by a Higgs not contribute because we
consider the electrons to be massless. Hence they do ndedouhe Higgs boson.

Considering Eq. (2.1) we note that near threshold the 848 < 1, since — 0 in the limit
v/S— 2m. Hence near threshold this term can be neglected. Whileeinsepointless to do this,
these simplifications become crucial when going to highderw. The corresponding technical
simplifications will allow us to resum a certain class of cgnitions to all orders in the strong
coupling as. But we have to keep in mind that (far) above thresh®ld- 1 and the second term

10r whatever goes under the name “summer” in the Lake District
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in Eqg. (2.1) is as important as the first. Finally we note thrabkernative way to obtain Eq. (2.1)
is to consider the one-loop forward scattering amplitetie- — y* — tt — y* — e*te™. Ignoring
the trivial electroweak pagte  — y* this is nothing but the photon vacuum polarization with a
top quark loop. According to the optical theorem, the imagipart of the forward scattering
amplitude equals the total cross section up to a trivialgute.

The usual procedure for improving the theoretical resutbisompute higher order correc-
tions. At next-to-leading order (NLO) ios we either have to add the separately divergent virtual
corrections fory* — tt and real correctiong* — ttg, or compute the forward scattering amplitude
at 0'(as). This has been done a long time ago [2]. The precise form ofethglt is not important
for us, but schematically it reads

RY =RO <1+ as

= 2
B + cst+ BlogB + D (2.2)

What is important is that at NLO we would find corrections thahave asrs/B. The problem
with these terms is that in the regigh— 0 they are not small compared to 1, i.e. the NLO terms
are not small compared to the LO terms. If we were to compuém @ne order higher, i.e. at
¢(a?) we would find corrections of the forra2/B2 which cause the same problem. On top of
this, we would also find terms of the fora log3. While these terms are not quite as bad they
can still be dangerous in the sense that for sifiahe large logarithm lo§ can compensate the
small couplingas. In Eq. (2.2) the corresponding term is harmless as it agpsih a factor32

but beyond NLO potentially large logarithms are presentsdimmarize, a strict order by order in
as approach is fine if we are (far) above threshold, Be>~ 1, but in the threshold region such an
approach completely fails.

To get a meaningful theoretical result in the thresholdaoegie have to reorganize the pertur-
bative series and perform a double expansion. That is we tlontypexpand in the small coupling
as but also in the smalB and for the purpose of counting the order we get~ B < 1. The
perturbative series then looks like

a n
R=p (—5> ><< 1 +[~as B]+[~ad, B2 a53]+...> (2.3)
Hp) H\gringirire s

In this context the LO result takes into account theadB*) term of Eq. (2.1), thes(aiBP) term

of Eq. (2.2) as well as all terms of the forf(afB~"). NLO terms are suppressed w.r.t. the LO
result by one small factor, either; or 3. Correspondingly, NNLO terms are suppressed by any
combination of two small factors and so on and from now on weag$ mean this when referring
to the order of the perturbative expansion.

For a LO computation in the threshold region we have to sumitefy many terms. At each
order inas we have to take the leading term iffA. To do this in a systematic way we have
to use an effective theory approach. A detailed discussfasuch an approach is well beyond
the scope of this lecture (see e.g. Ref. [3]) but | will try f@egan idea how this works in what
follows. The main idea is to exploit the hierarchy of scaleshe threshold region, the top quarks
are non-relativistic, i.e. their kinetic enerdy is much smaller than their mass. Thus we have
E ~mB? < p~ mB < m, wherep is the momentum of the top. Let us now consider how this can
be used to study the interaction of two heavy non-relate/igtiarks.
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From a quantum field theory point of view the quarks interacekchanging gluons. Using
Feynman rules for the corresponding diagranvédrs) shown in pane(a) of Figure 1 we obtain

i = ana T p—q)yhu(p) oWy V(D +q) ;—2' (guv - <1—f)qg#) (2.4)

where ¢ is the gauge parametey,is the exchanged momentum a#tlis a colour factor. If the
quarks are in a colour singlet state (e.g. created from aophete haves’ = Cg = 4/3 whereas in
an colour octet state we ha¥é=Cr —N;/2 = —1/6. In the centre-of-mass frame of the quark pair
the momenta of the quarks are givenpy= (m+E, p) andp’ = (m+E’,—p) with p~ g’ ~ mB
andE ~ E’ ~ mB2. To ensure that the quarks are still non-relativistic affter exchange of the
gluon with momentung we needg® ~ mB2 andg ~ mB. A field with momentum that scales
in such a way is called a potential field. Using all the infotima we have we can simplify the
expression given in Eq. (2.4). First we note that &xdependent terms vanish due to the Dirac
equation. Secondly we usg ~ —@? because® < . Finally we note thatiyPu ~ 1+ &(1/n?)
whereasiyu ~ p/m~ 3 (and similarly forv spinors). Thus the leading part of the interaction does
not know anything about the spin of the quarks. This is faniliom the hydrogen atom where the
leading interaction is spin independent. Putting evenghiogether Eq. (2.4) simplifies to

AT
g2
Thus in the colour singlet case the leading term from theaxgh of a single potential gluon results

in an interaction term-41asCr /g2 whose Fourier transform isasCr /r with r = |F|. This is the
QCD version of the Coulomb potential (hence the name pategition).

9 =121 (2.5)

(@)

Figure 1: (a) exchange of a single gluon between non-relativistickgjgb) ladder diagram with multiple
exchange of potential gluons, corresponding to LO potEpfianon-relativistic quarks; (c) some of the
diagrams contributing to the NLO correction to the potdrtfanon-relativistic quarks.

To understand what happens if several potential gluonsxateeged it is convenient to go to
coordinate space. In fact we can now write down the Scrodiegeation

T —E- ir) Ge(T5E) = 83(1) (2.6)

for the Coulomb Green functio@; which includes the Coulomb potential to all orders. We also
take into account the width of the top quark. Using our cauntiules we note that all terms are
of the same orderf]2/m~ p2/m~ B2, as/r ~ asp ~ asP, E ~ B2 and counting the electroweak
coupling asa ~ a2 we also havd ~ am~ B2. Thus we cannot treat the exchange of potential

2This counting is motivated simply from a numerical point @w.
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gluons in a perturbative way. We have to solve Eq. (2.6) éxatztking into account multiple
potential gluon exchange. In fact this resums the termsara? (afB31~") mentioned before and
corresponds to the sum of diagrams shown in pénmedf Figure 1.

The solution to Eqg. (2.6) is essentially the well-known ol for the hydrogen atom and can
for example be written as

V_ImE o A
Go(T;E) = = Z_HmEe_“/mE—/O dre 2V -MmET (—14; T) (2.7)

with A = Cras/(2y/—E/m) andE = E +il". However, we neet, for F = 0, since the imaginary
part of G¢(0;E) via the optical theorem is related to the total cross sectiBnt att = O the
Coulomb Green function has an ultraviolet singularity.ded, after setting— 0 in Eq. (2.7) ther
integration results in a divergence. In order to deal with the have to work in momentum space.
Fortunately the ultraviolet singularity is restricted ke ffirst two terms of the expansion Gf in
as. Therefore we can compute these terms in momentum spaceoartdre the result with the
well-known result forG, for all higher orders iras. The result is

Cr ? 1 1 1 —4mE
Ge(0E) = - I=F ( il

1
A _4_§+5+§|097_§+VE—HU(1_)\)> (2.8)

where Y& = 1/¢ + log(4m) — ¥ is the dimensionally regulated ultraviolet singularitytiwthe
corresponding scalg. The cross section is proportional to the imaginary pafbof

671e? Ne
Y
and thus is not affected by the ultraviolet singularity. Hwoer it contains terms to all orders in
as with as always appearing in the combinatidn~ as/B. The terms¢(alB") have been
resummed. Note also that even strictly at threshBles; O the result is well defined. This is due to
the width of the top, but would actually even hold if the widtas negligible as is the case for the
bottom quark.

If we were to plot Eqg. (2.9) as a function & we would obtain a result similar to the LO
curves in Figure 2. Below threshold the cross section rgpidhishes. Around threshold there
is a peak due to the fact that the two top quarks try to form anbi@iate (similar to th&” in the
bottom case). However, due to the large width the tops deefyrdothey can form a bound state.
If we decreasé, the peak becomes higher and thinner and in the limit O we would find delta
peaks below threshold, corresponding to bound states. obisisrvation leads directly to a simple
method for a precise determination mfandl”, roughly speaking by measuring the position and
the width of the peak. Of course, in a real experiment theesuwould look rather different due to
bremsstrahlung and other effects. However, a detailed/sisadhows that a precise measurement
of mwith an error ofdm ~ 20— 50 MeV andl” with an error ofdl" ~ 30 MeV is still possible [4].

With such a high precision im great care has to be taken to use a suitable definition of the
mass. In particular, to achiev®m < Agcp ~ 200 MeV we have to abandon the pole mass. The
reason is that the pole mass has an ambiguity of ofdgy in perturbation theory. This can be
understood by considering a quark-antiquark meson. The ofahe meson is given by twice the
pole mass of the quark minus the binding energy. Being a palyguantity, the mass of the meson

R

Im G¢(0, E) (2.9)
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is well defined. However, due to non-perturbative effedts, thinding energy has an ambiguity
~ Nqcp in perturbation theory. This entails that the pole mass ragé the same ambiguity such
that the effect cancels for the meson mass. Therefore wethawse a so-called short-distance
threshold mass. The word short-distance refers to the abs#mon-perturbative ambiguities and
there are several possible definitions [5].
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Figure 2: Threshold scan for top pair production near threshold upNa®, without (left panel) and with
(right panel) resummation of Ig@yterms. The results and plots are taken from Ref. [7].

The result Eq. (2.8) is of course not the full story but cqumesls only to the LO result ac-
cording to Eq. (2.3). To go beyond we have to take into accabigiier-order corrections to the
Coulomb potential as well as corrections higher ordefSinThe latter will contain relativistic
corrections and spin dependent corrections familiar froeniydrogen atom. The potentials can
be computed in momentum space, in principle to any order,dmgpeiting Feynman diagrams.
Some diagrams contributing at NLO are shown in p&ogbf Figure 1. In general divergences are
encountered that are regulated using dimensional regateoin. Once the potential is known, stan-
dard quantum mechanics perturbation theory can be usedripute higher-order corrections to
Gc. This program has been carried out up to NNNLO [8]. In thepetftel of Figure 2 we show the
results at LO, NLO and NNLO for various scale choices. Théatian of the result with the scale
U is an indication on how reliable the theoretical predicti@nThe scale dependence is still rather
large at NNLO, indicating large corrections and a ratherpomvergence. This poor convergence
can partly be understood by recalling the presence of patnlarge logB terms. In fact these
terms can be resummed as well [6, 7] and this improves thescgerce substantially, as shown in
the right panel of Figure 2. On the other hand there are aftge laon-logarithmic corrections and
a full exploitation of future experimental data would raguadditional theoretical work. In this
context it should also be mentioned that the electroweakydetthe top is not properly taken into
account in the current calculations.

3. Top-Higgs Yukawa coupling

If the mass of fermions is generated through the Higgs meésimathere is a close relation
between the mass of a fermion and the strength of its coupdiige Higgs. Because the top has
a Yukawa coupling that is very close to its natural vajue- 1, the top is the prime candidate for
this test. Ideally we would measure the top-Higgs Yukawapting with the same precision as the
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mass. Unfortunately such a precision is well beyond whatbeaachieved, but there are (at least)
two ways to measurg ata LC.

The first uses once more the threshold scan. The potentiaébatthe top quarks also receives
a contribution from the exchange of a Higgs bogdn= —y?e ™" /((4m)?r). This potential is
much smaller than the usual QCD potential, but since therlaiths been taken into account to a
very high precision, a very precise experimental detertiinaf the cross section in the threshold
region could be used to determipe However, this measurement hinges on a careful assessfent o
other (small) contributions of similar size and theordtigecertainties. Atthis momentitis difficult
to estimate to what precision a measurement could be matie, the literature a precision of 35%
for y; has been mentioned [4].

Another option is to measurg more directly by consideringH production. This is similar
to what is done at a hadron collider. The cross section isonlsW proportional to/? and if it can
be measured precisely enough it leads to a determinatign ©he advantage of using a LC rather
than the LHC is that potentially a better precision can baiokd. On the other hand the process
requires a large centre-of-mass eneygyof the collider which is not much of an issue at the LHC.
The precision with whicly; can be measured at a LC crucially depends on the Higgs mass and
V/s. As an example, if the Higgs mass is in the expected range E0<Gmy < 170 GeV at a
v/S=800 GeV linear collidey; can be measured with a precision better than 10% [9].

4. Top pairsat LHC

At the LHC the main production mechanism for top pair prothrcts through the process
gg — tt with qq — tt playing a smaller role. The top quark pairs a produced either colour
singlet or in a colour octet state. Computiﬁ&, the total partonic cross section to NLOdg we
schematically find [10]

. 1
t<t1>:at<t°>(1+as[~ﬁ+~|ogZB+~IogB +CstD (4.1)

which has very similar features as Eq. (2.2). The potegtlalige logarithms have been resummed
quite a while ago [11] but, somewhat surprisingly, thg'3 terms have been resummed only re-
cently [12]. The results are shown in Figure 3. For the cofinglet component, the result is very
similar to the results obtained witif e~ in the initial state. The colour octet contribution however
behaves differently. Because the colour factor has a diftesign, the colour octet potential is not
attractive and therefore cannot give rise to a bound statehd top case this means there is no
bump from a would-be bound state. Very close to thresholdctheur singlet is dominant, but
soon the octet contribution becomes more important.

At a hadronic collider the partonic cross sectimphas to be folded with parton distribution
functions. Furthermore it is very difficult to measure thesimant mass of the top pairs to a high
precision. As a result it is very unlikely that the top widiéincbe measured, despite the nice peak
in the total partonic cross section. However, the top quasksitan of course be measuread at the
LHC and in fact has been measured at the Tevatron. The mahoohé&t do this is by considering
the invariant mass of the decay products of the top. Anotp&ow, more similar to what would
be done at a LC, is to measure the cross section very precselyse its dependence onfor
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Figure 3: Invariant mass distribution for the colour singlet and bpertonic cross section at the LHC with
v/S= 10 TeV (left panel) and/s= 14 TeV (right panel). The results and plots are taken from R&.

a determination of the mass. However, both methods have khebgtandards of a linear collider
measurement — relatively large inherent uncertaintiesitaadery difficult to see how at a hadron
collider a measurement afiwith a precision better thadm~ T ~ 1.5 GeV can be made.
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