

CLIC Detector

Michael Hauschild* CERN E-mail: michael.hauschild@cern.ch

Third Linear Collider Physics School 2009 - LCPS2009 August 17 - 23 2009 Ambleside, UK

*Speaker.

CLIC Detector (What is the difference between an ILC and a CLIC Detector?)

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 1

Physics at the Terascale

- New physics is expected at the ~TeV scale
 - Higgs, Supersymmetrie, extra dimensions etc.

First machine to enter the Terascale is LHC

- LHC is a discovery machine
 - broad energy spectrum of partons in the protons give access to highest energies (enough luminosity provided)
- LHC is not a precision machine
 - cross sections of interesting physics processes many orders of magnitude lower than physics background processes -> harsh environment, experimentally difficult
- LHC also cannot cover full spectrum of SUSY particles (if any)

LHC needs to be complemented by a precision e⁺e⁻ Linear Collider

- but at what energy?
 - is 500 GeV or 1 TeV enough? can we get sufficient physics output up to 1 TeV?
- do we need more energy?

ILC and CLIC Technologies

- •Based on superconducting RF cavities •Gradient 32 MV/m
- •Energy: 500 GeV, upgradeable to 1 TeV (possible GigaZ factory at 90 GeV or ZZ factory at ~200 GeV is also considered)

Detector studies focus mostly on 500 GeV

technology available Linear Collider Physics School 2009 –CLIC Detector

Based on 2-beam acceleration scheme (warm cavities)
Gradient 100 MV/m
Energy: 3 TeV, though will probably start at lower energy (~0.5 TeV)
Detector study focuses on 3 TeV
feasibility still to be demonstrated Michael Hauschild - CERN, 22-Aug-2009, page 3

The CLIC Two Beam Scheme

Linear Collider Physics School 2009 -CLIC Detector

CLIC Two Beam Module

CLIC 3 TeV Overall Leyout

Linear Collider Physics School 2009 -CLIC Detector

Breakdown Rate

Major problem over last years

- breakdown and damage of accelerating structure at high gradients and long pulse length
- need to keep breakdown rate (damage) as low as possible

CLIC Bunch Spacing

CLIC study started at CERN about ~20 years ago

major revision of CLIC parameters made in summer 2007

Basic changes

- 30 GHz -> 12 GHz RF frequency
 - close to old NLC frequency (11.424 GHz)
 - easier to adapt NLC work and experience
 - lower frequency allows more relaxed alignment tolerances
- 150 MV/m -> 100 MV/m
 - reduces breakdown rate and surface damages in RF accelerating structures
 - 50 km long LINAC allows 2 x 1.5 TeV = 3 TeV CM energy (was 5 TeV)
- (0.5 ns)bunch spacing, 312 bunches (= 156 ns bunch trains), 50 Hz (3 TeV)
 - optimized for maximum luminosity
 - was subject of various changes in the past: 0.667 ns -> 0.267 ns -> 0.667 ns -> 0.5 ns

Aim for feasibility and conceptional design report in 2010

detector challenge

Linear Collider Physics School 2009 -CLIC Detector

ILC + CLIC Parameters

Luminosity at 500 GeV similar to ILC

	500 GCV 31		
Center-of-mass energy	ILC 500 GeV	CLIC 500 GeV	CLIC 3 TeV
Total (Peak 1%) luminosity [·10 ³⁴]	2(1.5)	2.3 (1.4)	5.9 (2.0)
Repetition rate (Hz)	5	1	50
Loaded accel. gradient MV/m	32	80	100
Main linac RF frequency GHz	1.3	િ	12
Bunch charge [·10 ⁹]	20	6.8	3.7
Bunch separation (ns)	370	0.5	
Beam pulse duration (ns)	950μs	177	156
Beam power/beam (MWatts)		4.9	14
Hor./vert. IP beam size (nm)	600 / 6	200 / 2.3	40 / 1.0
Hadronic events/crossing at IP	0.12	0.2	2.7
Incoherent pairs at IP	1 ·10 ⁵	1.7·10 ⁵	3·10 ⁵
BDS length (km)		1.87	2.75
Total site length km	31	13	48
Total power consumption MW	230	130	415

Crossing Angle 20 mrad (ILC 14 mrad)

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 9

Precise alignment/stability

Extremely small beam sizes require unprecedented beam focusing stability

- how to link left-arm and right-arm?

- LumiCal could measure via Bhabha scattering
- last quadrupole (at +/- 3.5 m) alignment requirements
 - ILC: < 4 m (x,y), < 100 m (z)
 - CLIC: more severe...

typical size of 1 atom

Linear Collider Physics School 2009 -CLIC Detector

Main CLIC -ILC differences

Higher energy -> more dense particle jets (independent on machine concept)

- need tracker with better double track resolution
 - TPC with good double hit resolution (GEMs, MicroMegas) reconsidered again as CLIC main tracker as alternative to full Si tracker
- need calorimeters with larger thickness and higher granularity
 - Particle Flow concept requires to identify individual calorimeter EM and hadronic clusters
 - alternatively: forget particle flow, build calorimeter with (hardware) compensation = DREAM concept

Much shorter bunch spacing: 0.5 ns (CLIC) vs 337 ns (ILC)

- need 'time-stamping': identification of tracks from individual bunch crossings
 - if no time-stamping -> overlay of physics events with hadronic background from beamstrahlung
- general time structure also has consequences for pulsed electronics

Smaller beam sizes + higher E -> more (severe) background

need to move innermost layers further out

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 11

CLIC Detector Study

- CLIC detector study has started in 2008 at CERN
 - starting point: existing SiD and ILD concepts and simulations
 - have to modify/adjust concepts to CLIC needs

CLIC detector = '90% ILC detector"+ '10% CLIC specifics"

- CLIC is profiting a lot from ongoing ILC detector R&D and design studies
- but ILC also profits from CLIC studies
 - CLIC detector = 'extreme"ILC detector -> win -win situation for both communities
 - common work on Particle Flow Algorithms
 - engineering studies (push -pull), also foreseen at CLIC

Aim

prepare addenda for ILC LoIs end of 2010

- "SiD-like concept"@ CLIC @ 3 TeV
- "ILD-like concept"@ CLIC @ 3 TeV
- 4th concept?

Beamstrahlung

unavoidable at Linear Colliders in general: small beam sizes -> large beamstrahlung

more severe at CLIC because of higher energy and smaller beamsizes

Parameter	Symbol	CLIC 3 TeV	CLIC 1 TeV	CLIC 0.5 TeV	ILC 0.5 TeV	NLC 0.5 TeV	Unit
Transverse horizontal emittance	^{γε} x	660	660	660	8000	3600	nm rad
Transverse vertical emittance	γε _y	20	20	20	40	40	nm rad
Nominal horizontal IP beta function	β [*] x	4	20	15	20	8	mm
Nominal vertical IP beta function	β [*] y	0.09	0.1	0.1	0.4	0.11	mm
Horizontal IP beam size before pinch	°x	40		142	640	243	nm
Vertical IP beam size before pinch	с ^х	1		2	5.7	3	nm
Beamstrahlung energy loss	⁸ в	29	11	7	2.4	5.4	%
No. of photons / electron	n _x	2.2	1.2	1.1	1.32	1.3	-
No. of pairs (p _T ^{min} =20MeV/c, Î, _{min} =0.2)	N _{pairs}	45	17.1	11.5			-
No. of coherent pairs	N _{coh}	38	0.07	0.0001			10 ⁷
No. of incoherent pairs	N _{incoh}	0.44	0.09	0.05			10 ⁵
Hadronic events / crossing	N _{hadron}	3.23	0.29	0.1			-

- CLIC 3 TeV beamstrahlung $\Delta E/E = 29\%$ (~10 x ILC at 500 GeV)

- 3.8 x 10⁸ coherent pairs per BX (dispappear in beam pipe)
- 4.4 x 10⁴ incoherent pairs per BX (suppressed by strong solenoid field)
- 3.2 hadronic events per BX (from $\gamma\gamma$ -> hadrons)

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 13

scattered photons/neutrons

Michael Hauschild - CERN, 22-Aug-2009, page 14

Linear Collider Physics School 2009 -CLIC Detector

Lessons Learnt from ILC

Dominant background

- pair production
- Innermost vertex layer (r = 1.5 cm) has 0.04 hits/mm²/BX
- critical level of neutrons (radiation damage) at small radii of HCAL end-cap
- Most backgrounds can be controlled by careful design
- Full detector simulation needed to avoid overlooking effects

10% beam crossing in ILD detector at 500 GeV

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 15

Extrapolation ILC -> CLIC

Full LDC detector simulation at 3 TeV

 simulation of e⁺e⁻ pairs from beamstrahlung

Conditions

- ILC: 100 BX used (1/20 bunch train)
- CLIC: 312 BX used (full bunch train)

Conclusions (compared to ILC)

- CLIC VTX
- O(10) times more background
- CLIC TPC
 - O(30) times more background

CLIC Time Structure

Bunch Spacing

- ILC: 337 ns, enough time to identify events from individual BX
- CLIC: 0.5 ns, extremely difficult to identify events from individual BX
 - need short shaping time of pulses
 - power cycling with 50 Hz instead 5 Hz at ILC
 - larger power dissipation? does silicon tracker need to be cooled? (not cooled in SiD)

Why Time Stamping?

Time Stamping

- Ideal detector would be capable to identify particles from individual bunch crossings in all detector components
 - not realistic, most detectors don't have 0.5 ns resolution or better

Way out

- add a few dedicated time stamping layers
 - Fast silicon pixel layers for tracking
 - TOF layer with high granularity in front or inside calorimeters
 - ALICE Multigap RPCs have time resolutions of <100 ps

ALICE-TOF has 10 gas gaps (two stacks of 5 gas gaps) each gap is 250 micron wide Built in the form of strips, each with an active area of 120 x 7.2 cm², readout by 96 pads

Linear Collider Physics School 2009 -CLIC Detector

Time Stamping - Calorimeters

Fast TOF available already today

- need to optimize for CLIC
- granularity, segmentation, material, electronics (type/power)
- how fast do we really need? faster electronics -> higher power consumption

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 21

Time Stamping - Tracking

Limitations

- time stamping requires fast detector/electronics
- but cannot affort too many channels/pixels (high power consumption)

Basic idea

- have few time stamping layers
 - fast, larger pixels, less spatial resolution, channels
 - Hybrid pixel, 0.3 x 0.3 mm²
- + 'standard"tracker layers
 - "slow", small pixels, many channels, precise
 - Monolithic sensor pixel, 0.02-0.05 mm segmentation
 - integrate over full bunch train (156 ns)

Similar concept as for trigger

- fast + course detectors give triggers
- slow + precise detectors used for reconstruction

2 vertices in 2 different BXs in one train

e stamp plane

2 events at different time stamps in the same train

Time stamp plane

Linear Collider Physics School 2009 –CLIC Detector

Time Stamping - Prospects

Jet Energy Resolution (ILC + CLIC)

Need enough resolution to separate Z and W decaying into jets: e⁺e⁻ → vv + WW/ZZ → jets

• Improvement of $\Delta E/E$ from 60%/ \sqrt{E} to 30%/ \sqrt{E}

- equivalent to ~40% luminosity gain in ΔM_{h}

similar luminosity gain in $\Delta BR(H \rightarrow WW^*)$, Δg_{hhh}

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 24

W/Z

W/Z

W/7

Positron

Jet	Mul	tipl	licitie	25
-----	-----	------	----------------	----

Jet Multiplicity					
$\sqrt{s} (\text{TeV})$	0.09	0.20	0.5	0.8	3.0
$< N_{Jets} >$	2.8	4.2	4.8	5.3	6.4

 LEP1
 LEP2
 ILC
 ILC
 CLIC

 90 GeV
 200 GeV
 500 GeV
 800 GeV
 3 TeV

multi-jet event at √s = 3 TeV e⁺e⁻ -> WW -> qqqq

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 25

Distance of Leading Particles in Jets

Spatial distance neutral – charged hadrons

(J.J. Blaising)

	Njet, Ecm, B	Δ (cm) MPV barrel	∆ (cm) RMS barrel	Δ (cm) MPV endcap	∆ (cm) RMS endcap
$\nu\nu H^0$	2J, 0.5 GeV,4T	8.0	3.6	9.7	4.4
tī	4/6J, 0.5 GeV,4T	6.4	2.8	8.6	6.7
$\nu\nu H^0$	2J, 3.0 TeV, 4T	3.8	2.6	2.6	2.4
tŦ	4/6J, 3.0 TeV, 4T	1.0	1.1	1.7	0.9
tŦ	4/6J, 3.0 TeV, 5T	1.4	1.2	1.9	1.0

Distance, $\boldsymbol{\Delta}$, at the 1. layer of HCAL

• at 3 TeV neutral - charged particle separation only ~ 1 cm

cluster of neutral and charged hadrons will overlap in HCAL

• neutral hadron reconstruction (with PFA) only by subtraction

Linear Collider Physics School 2009 -CLIC Detector

CLIC Calorimetry

Particle Flow Performance

Performance depends largely also on software algorithms

"software compensation"

several algorithms are being developed today best performing: PandoraPFA (M. Thompson)

from	Mark Thompson, CALICE-UK,
	Cambridge

PandoraPFA v02- α

PandoraPFA v02-α

0.8 0.9 1 |cosθ| 09/2007

E _{JET}	$\sigma_{\rm E}/E = \alpha/\sqrt{E_{\rm jj}}$ cos θ <0.7	σ _E / E j
45 GeV	0.227	3.4 %
100 GeV	0.287	2.9 %
180 GeV	0.395	2.9 %
250 GeV	0.532	3.4 %

45 GeV Jets 100 GeV Jets 180 GeV Jets 250 GeV Jets

0.1 0.2 0.3 0.4 0.5 0.6 0.7

★ For 45 GeV jets, performance now equivalent to

23 % / √E

energy range > 100 GeV still problematic but ... work in progress !

Does PFA work for CLIC at 3 TeV?

- higher energies
- particle separation in HCAL ~ few cm only

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 29

PFA Alternative: the 4th Concept

Energy Resolution

Jet

 $Z \rightarrow uds$

DREAM concept (Dual REAdout Module)

Basic idea

- have calorimeter with absorber and two types of fibers to measure EM and hadronic shower separately
 - clear fibers: sensitive to EM shower only via Čerenkov light
 - scintillating fibers: sensitive to both EM and hadronic shower
 - Triple Readout: sensitive to neutrons in late scintillating signal
- hardware compensation
 - good energy resolution but still a sampling calorimeter (separate absorber + detector)
 - sampling fluctuations degrade resolution

Can one do even better?

- have fibers both acting as absorber and detector
 - get 'quasi-homogeneous'' calorimeter
- need to find/develop heavy materials to be use as fibers

Linear Collider Physics School 2009 -CLIC Detector

Summary of CLIC Challenges + R&D

Time stamping

- most challenging in inner tracker/vertex region
- trade-off between pixel size, amount of material and timing resolution
- Power pulsing and other electronics developments
 - in view of CLIC time structure

Hadron calorimetry

- dense absorbers to limit radial size (e.g. tungsten)
- PFA studies at high energy
- alternative techniques, like dual/triple readout

Background

- innermost radius of first vertex detector layer
- shielding against muon background more difficult at higher E

Alignment and stability

Linear Collider Physics School 2009 -CLIC Detector

Michael Hauschild - CERN, 22-Aug-2009, page 31

Tentative long-term CLIC Scenario

Technology evaluation and physics assessment based on LHC results for a possible decision on Linear Collider with staged construction starting with the lowest energy required by physics

Linear Collider Physics School 2009 -CLIC Detector