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CLIC Detector

(What is the difference between an ILC and a CLIC Detector?)

multi-jet event
atvs =3 TeV
e'e -> WW -> qqqq
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Physics at the Terascale

¢ New physics is expected at the ~TeV scale
- Higgs, Supersymmetrie, extra dimensions etc.

¢ First machine to enter the Terascale is LHC
- LHC is a discovery machine

broad energy spectrum of partons in the protons give access to highest energies
(enough luminosity provided)

- LHC is not a precision machine

cross sections of interesting physics processes many orders of magnitude lower than
physics background processes -> harsh environment, experimentally difficult

- LHC also cannot cover full spectrum of SUSY particles (if any)

¢ LHC needs to be complemented by a precision e*e” Linear
Collider

- but at what energy?
is 500 GeV or 1 TeV enough? can we get sufficient physics output up to 1 TeV?

- do we need more energy?
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ILC and CLIC

ILC

*Based on superconducting RF cavities

*Gradient 32 MV/m

*Energy: 500 GeV, upgradeable to 1 TeV
(possible GigaZ factory at 90 GeV or
ZZ factory at ~200 GeV is also
considered)

*Detector studies focus mostly on 500 GeV

technology available
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Technologies
CLIC

*Based on 2-beam acceleration scheme
(warm cavities)

*Gradient 100 MV/m

*Energy: 3 TeV, though will probably start
at lower energy (~0.5 TeV)

*Detector study focuses on 3 TeV

feasibility still to be demonstrated
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The CLIC Two Beam Scheme

Two Beam Scheme

Drive Beam supplies RF power
* 12 GHz bunch structure

* low energy (2.4 GeV - 240 MeV)
* high current (100A)

Main beam for physics
* high energy (9 GeV - 1.5 TeV)
e current 1.2 A

EETE *
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Drive beam - 100 A
from 2.4 GeV -> 240 MeV
(deceleration by
extraction of RF power)

/

POWER EXTRACTI ON
STRUCTURE

QUAD

ACCELERATI NG =

STRUCTURES 112 GHz -68 MW

/

Main beam - 1.2 A
from 9 GeV -> 1.5 TeV

BPM

No individual RF power sources

->
CLIC itself is basically
a ~50 km long klystron...
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CLIC Two Beam Module

COOLING CIRCUITS

ACCELER. STRUCTURE
RF DISTRIBUTION (BRAZED DISKS)

VACUUM MANIFOLDS

MHIHN i
am L i BEAM
\ ; gy, Sy INSTRUMENTATION
Dy Y ag> Y &
am s

CRADLES

ALIGNMENT
SYSTEM

INTERCONNECTIONS PETS (MINI-TANK) PETS (OCTANTS)

20760 modules (2 meters long) possible CLIC

: tunnel scheme
71460 power production structures

PETS (drive beam)
143010 accelerating structures
(main beam)
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CLIC 3 TeV Overall Leyout

Drive Beam
Generation Complex

326 klystrons EELEEEE 326 klystrons
33 MW, 139 s Ealani 33 MW, 139 s
A30ps ||| CR1 144.8m - P 199 W
drive beam accelerator 2.38 GeV, 1.0 GHz CR2434.3 m drive beam accelerator 2.38 GeV, 1.0 GHz

1km 1km B
delay loop » 4 delay loop
decelerator, 24 sectors of 876 m
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(_/}' 2.75 km o 2.75 km 2{\%
TAradius=120m & main linac, 12 GHz, 100 MV/m, 21.02 km e* main linac TA radius = 120 m

- A -
e v Main Beam
Generation Complex
CR  combiner ring | booster linac, 9 GeV
TA  tumaround

DR damping ring

PDR predamping ring

BC  bunch compressor e injector, 2.4 GeV
BDS beam delivery system

P interaction point

e’ injector, 2.4 GeV
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Breakdown Rate

¢ Major problem over last years
- breakdown and damage of accelerating structure at high gradients and

long pulse length

- need to keep breakdown rate (damage) as low as possible

High power test of
CERN (design) 107
KEK (machined)
SLAC (brazed)

T18vg24-disk

TTTfccecrororcoccocfroecoocpeoeoecs Feoo=c

T T T
¢ T18230 ns after 250 h
& T18 230 ns after 500 h

O T18230 ns after 1000 h |~~"F

structure 5]

Breakdown probability

= |cuc

e e e
Improvement by 10° L . P i i i | 9
96 98 100 102 104 106 108 110 112

RF conditionning Average unloaded gradient (MVim)
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CLIC Bunch Spacing

¢  CLIC study started at CERN about ~20 years ago

major revision of CLIC parameters made in summer 2007
¢  Basic changes

- 30 GHz -> 12 GHz RF frequency

close to old NLC frequency (11.424 GHz)
easier to adapt NLC work and experience
lower frequency allows more relaxed alignment tolerances

= 150 MV/m -> 100 MV/m

reduces breakdown rate and surface damages in RF accelerating structures
50 km long LINAC allows 2 x 1.5 TeV = 3 TeV CM energy (was 5 TeV)

unch spacing, 312 bunches (= 156 ns bunch trains), 50 Hz (3 TeV)

optimized for maximum luminosity

was subject of various changes in the past:
0.667 ns -> 0.267 ns -> 0.667 ns -> 0.5 ns

Aim for feasibility and conceptional design report in 2010

detector challenge
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ILC + CLIC Parameters

Luminosity at

500 GeV similar to ILC

Center-of-mass energy ILC 500 GeV CLIC 500 GeV CLIC 3 TeV
Total (Peak 1%) luminosity [-103%4] 2(1.5) 23 (1.4) 5.9 (2.0)
Repetition rate (Hz) 5 50
Loaded accel. gradient MV/m 32 80 100
Main linac RF frequency GHz 1.3 12
Bunch charge [-107] 20 6.8 3.7
Bunch separation (ns) 370 0.5
Beam pulse duration (ns) 950us 177 156
Beam power/beam (MWatts) 4.9 14
Hor./vert. IP beam size (nm) 600/ 6 200/2.3 40/1.0
Hadronic events/crossing at IP 0.12 0.2 2.7
Incoherent pairs at IP 1-10% 1.7-105 3-10°
BDS length (km) 1.87 2.75
Total site length km 31 13 48
Total power consumption MW 230 130 415

Crossing Angle 20 mrad (ILC 14 mrad)
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Precise alignment/stability

¢ Extremely small beam sizes require unprecedented beam

focusing stability

- how to link left-arm and right-arm?

LumiCal could measure via Bhabha scattering
- last quadrupole (at +/- 3.5 m) alignment requirements

ILC: <4 m (x,y), < 100 j (2)

CLIC: more severe...
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Main CLIC -ILC differences

“ ngher energy -> more dense partiCIQ jEtS (independent on machine concept)

= need tracker with better double track resolution

TPC with good double hit resolution (GEMs, MicroMegas) reconsidered again as CLIC
main tracker as alternative to full Si tracker

- need calorimeters with larger thickness and higher granularity

Particle Flow concept requires to identify individual calorimeter EM and hadronic
clusters

alternatively: forget particle flow, build calorimeter with (hardware) compensation =
DREAM concept

¢ Much shorter bunch spacing: 0.5 ns (CLIC) vs 337 ns (ILC)

- need ‘time-stamping’ identification of tracks from individual bunch
crossings

if no time-stamping -> overlay of physics events with hadronic background from
beamstrahlung

- general time structure also has consequences for pulsed electronics

¢ Smaller beam sizes + higher E -> more (severe) background

- need to move innermost layers further out
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CLIC Detector Study

¢ CLIC detector study has started in 2008 at CERN
- starting point: existing SiD and ILD concepts and simulations

- have to modify/adjust concepts to CLIC needs

¢ CLIC detector = ‘90% ILC detector’+ “10% CLIC specifics”

- CLIC is profiting a lot from ongoing ILC detector R&D and design
studies
- but ILC also profits from CLIC studies

CLIC detector = ‘extreme”ILC detector -> win —win situation for both communities
common work on Particle Flow Algorithms
engineering studies (push —pull), also foreseen at CLIC

¢ Aim
- prepare addenda for ILC Lols end of 2010

“SiD-like concept’@ CLIC @ 3 TeV
“ILD-like concept”@ CLIC @ 3 TeV
4% concept?
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Beamstrahlung

Parameter Symbol CLIC CLIC CLIC ILC NLC Unit
unavoidable at Linear 3TeV 1TeV 0.5TeV 0.5TeV 0.5TeV
Colliders in general:
small beam sizes ->
large beamstrahlung Transverse horizontal emittance ve, 660 660 660 | 8000 | 3600 nm rad

Transverse vertical emittance ve, 20 20 20 40 40 nm rad

Nominal horizontal IP beta function a; 4 20 15 20 8 mm

X
Nominal vertical IP beta function &‘ 0.09 0.1 0.1 0.4 0.11 mm
y
Horizontal IP beam size before pinch o 40 142 640 243 nm
X
¥ Paive Vertical IP beam size before pinch o 1 2 5.7 3 nm
- y
/fi__'_'::\) - ,° Beamstrahlung energy loss Bg 29 11 7 2.4 5.4 %
I\\C—’/‘/ - -
= AR No. of photons / electron n, 2.2 1.2 L 1.32 13
Beamstrahlung No. of pairs (meinZZOMeWc, T:minzo'z) Npai’s 45 17.1 il 5
more severe at CLIC No. of coherent pairs Ncoh 38 0.07 | 0.0001 107
because of higher No. of incoherent pairs N [ 044 | 009 | 005 105

energy and smaller
beamsizes Hadronic events / crossing Nhadmn 3.23 0.29 0.1

- CLIC 3 TeV beamstrahlung AE/E = 29% (~10 x ILC at 500 GeV)

3.8 x 108 coherent pairs per BX (dispappear in beam pipe)
4.4 x 10* incoherent pairs per BX (suppressed by strong solenoid field)
3.2 hadronic events per BX (from yy -> hadrons)
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CLIC Luminosity Spectrum

:

e
—

L/LO per bin

0.01 &

0.001
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¢ Due to beamstrahlung

- only 1/3 of the luminosity is in the
1% top centre-of-mass energy bin

- many events with large forward or
backward boost + many back-
scattered photons/neutrons
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Lessons Learnt from ILC

¢ Dominant background
- pair production

- Innermost vertex layer (r = 1.5
cm) has 0.04 hits/mm?/BX

- critical level of neutrons
(radiation damage) at small radi
of HCAL end-cap

¢ Most backgrounds can be
controlled by careful design

¢ Full detector simulation
needed to avoid overlooking

effects
10% beam crossing in ILD detector at 500
GeV
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Extrapolation ILC -> CLIC

¢ Full LDC detector simulation at

3 TeV
. , . . A A CLIC-3000
-~ simulation of e*e" pairs from 10 F A CLIC-1000

beamstrahlung - ® CLIC-500

-1
¥

¢ Conditions
= |LC: 100 BX used (1/20 bunch train)
- CLIC: 312 BX used (full bunch train)

¢ Conclusions (compared to ILC)
= CLIC VTX
0O(10) times more background 10 £
= CLIC TPC = 5 & 7 -
0(30) times more background VTX Layer

......

Hits / mm~ / BX
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CLIC Vertex Detector

Vertex detector hits from incoherent pairs,B=5T >
two angular coverages 2
1000 ! 2
i —
| CLIC 0.5TeV ==s=seess L
° CLIC 3TeV resaeeeen: o
for — 100_' -
312 BX 'o 3
—_— 5 . B : |
o e m f :
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@ N |
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vertex det. at r = ~30 mm o 3 * -5 € vert _ |
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(15 mm for ILC) _ 2 il -
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kL
CLIC Time Structure
ILC L 20ms ce == .
trains | ll. I_.I I trains
* bunch crossing h bunch crossing
at 337 ns atl0.5 ns
bunches ‘...2.320...‘ bunches .;.__312...
0.950 ms . ) 156 ns

¢ Bunch Spacing
- |LC: 337 ns, enough time to identify events from individual BX
- CLIC: 0.5 ns, extremely difficult to identify events from individual BX

need short shaping time of pulses
power cycling with 50 Hz instead 5 Hz at ILC
larger power dissipation? does silicon tracker need to be cooled? (not cooled in SiD)
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Why Time Stamping?
¢ Overlay of physics events with background events from

several bunch crossings
- degradation of physics performance

¢ Main background sources from beamstrahlung

- e*e pairs from beamstrahlung photons
low p,, can be kept inside beam pipe with high magnetic field, B> 3 T

- hadrons from 2-photon collisions (beamstrahlung photons)
can have high p_, reach main tracker and confuses jet reconstruction

typically ~O(1) hadronic background event per BX with p_ > 5 GeV tracks

oo g —  cone-sizes 1
' Higgs mass reconstruction %, | + cone-sizes
1200 = - % " cone-sizes 3
X aeergyans | FECONStruction of H-> 70t % . cone-sizes 4
angul o
g 1000 —=  no yyrejection from = o ‘E
E_ 800 «:Nw:s-i.B HZ - bbqq 50-6 1
@ £
S oo § (.*‘l .
o
= 400 R -
H 0.5 -
200 | r_:.: r 111
100 110 120 130 140 150 180 170 180 0 2 4 4]
my, [GeV] <Ny>
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Time Stamping
¢ Ideal detector would be capable to identify particles from
individual bunch crossings in all detector components
- not realistic, most detectors don't have 0.5 ns resolution or better
¢ Way out
- add a few dedicated time stamping layers

Fast silicon pixel layers for tracking
TOF layer with high granularity in front or inside calorimeters
ALICE Multigap RPCs have time resolutions of <100 ps

ALICE-TOF has 10 gas gaps (two stacks of 5 gas gaps) each gap is 250 micron wide

Built in the form of strips, each with an active area of 120 x 7.2 cm?, readout by 96 pads

Cathode pickup N~ /
electrodes - “ve HV
Differential signal to [\ / electrically floating
front-end electronics T
< \ ; e
(_‘ '—l 2} < \_\'F)'D
iV y e - 1200 mm
l'v'l Y 1 electrically floating
| L | ILTELE L | U 72imm
Anode pickup \ ] < C iy
| electrode | J " 96 pads - each 25 x 36 mm?
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Time Stampmg Calorimeters

Vanous p088|bll|tres for detector W|th excellent t|m|ng -
obviously the segmentation and required electronics will
depend on expected use

— -

Classic TOF
before datector at Detector pIanes
calorimeter iy oo, embeddedi into
S hadron calorimeter
Pre-shower
Small pads larger pads  Strip readout?
high eff. low efficiency  low efficiency

¢ Fast TOF available already today

- need to optimize for CLIC

granularity, segmentation, material, electronics (type/power)
how fast do we really need? faster electronics -> higher power consumption
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Time Stamping - Tracking

¢ Limitations
- time stamping requires fast detector/electronics

- but cannot affort too many channels/pixels (high power consumption)

2 vertices in 2 dlfferent BXS in one

¢ Basic idea Jrain
- have few time stamping layers

fast, larger pixels, less spatial resolution,
channels

Hybrid pixel, 0.3 x 0.3 mm? _
- + ‘standard”tracker layers —

“slow’;, small pixels, many channels, precise
Monolithic sensor pixel, 0.02-0.05 mm segmentation
integrate over full bunch train (156 ns)

¢ Similar concept as for trigger
- fast + course detectors give triggers

Time stamp plane

Microveneg })’I!r% r

Time stamp plane

™
) “AIIVertices supenmposed at 1P
e,

2 events at different time stamps in the same train

- slow + precise detectors used for reconstruction
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Time Stamping - Prospects

¢ Preliminary results on 130 nm Front End circuits encouraging
- time resolution < 100 ps for 300 W power on 0.3 x 0.3 mm 2 pixel
“ FaSt Sensors a|SO enCOuraging 3D versus p[qnqr'

- cah reach 1 or 2 ns in 3-D silicon

¢ Proposal to build demonstrator
time stamp module for NA62

m‘
2
j Si pixel detectors with time stamp infggmation
N H measurement
: K75 GeV L
e el s J:} T of rare Kaon
: o | racvom decays:
] coroal Ne Kil=»>0mvy
1] ]
1 GIGATRACKER * latm
_: ANTIO H ‘ i
] o : g e
2 St:'aw'Chs'imbe:'s LEr
[l. slu - ll[m - 15'0 - 230 - 25‘0 Zm
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Jet Energy Resolution (ILC + CLIC)

¢ Need enough resolution to separate Z and W decaying into
jets: e'e » vv + WW/ZZ » jets Elektron

w/Z
¢ Improvement of AE/E from 60%/vE to 30%/VE :ﬁ
W/Z
- equivalent to ~40% luminosity gainin AM, Fomon

similar luminosity gain in ABR(H - WW¥), Ag, .

2000
1800 |

ab, ,
E === ={).6
1600 II|

g Ve

B AM, =50 MeV

1400 ~
1200

200 E
00

200 F .
T WA F g |

| 1 T - L |
100 120 140 160 oo 120 140 160
M,, (GeV) M,, (GeV)
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Jet Multiplicities
Jet Multiplicity

Vs (TeV) [0.09 [ 0.20 | 0.5 0.8 | 3.0
< Njets > | 28| 4248|5364

LEP1 LEP2 ILC ILC CLIC
90 GeV 200 GeV 500 GeV 800 GeV 3 TeV

multi-jet event
at Vs =3 TeV
e'e -> WW -> qqqq

Linear Collider Physics School 2009 -CLIC Detector Michael Hauschild - CERN, 22-Aug-2009, page 25

Distance of Leading Particles in Jets

Spatial distance neutral — charged hadrons

(J.J. Blaising)
Distance, A, at the 1. layer of HCAL

vvH? 2], 0.5 GeVAT 8.0 3.6 9.7 4.4

tt 4/6J, 0.5 GeV AT 6.4 2.8 8.6 6.7
vvH 2],3.0 TeV, 4T 3.8 2.6 2.6 24

ti 4/6], 3.0 TeV, 4T
tit 4/6J,3.0 TeV, 5T

« at 3 TeV neutral - charged particle separation only ~ 1 cm
» cluster of neutral and charged hadrons will overlap in HCAL
* neutral hadron reconstruction (with PFA) only by subtraction
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CLIC Calorimetry

¢ Higher energy -> deeper hardronic shower
~ need deeper HCAL (=8 a)

want to keep HCAL inside coil
cannot increase coil radius too much

- need heavy absorber (tungsten?) to limit thickness

¢ 2 general con
general concepts Method and engineering

- based on Particle Flow Algorithm (as |LC) difficult, but conventional

highly segmented (~25 mm?) ECAL i o
segmented HCAL Limited in energy-range to a

does it work at 3 TeV??? few hundred GeV

- based on Dual (Triple) readout

homogeneous ECAL Method and engineering
based on crystals difficult and non-proven
sampling HCAL
based on fibres Not limited in energy range
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Particle Flow

¢ Many physics signatures have complicated multi-jet final
states >6 jets (6.4 jets per event at 3 TeV)

- good jet energy resolution required (2x better than at LEP)
LEP: o(E,) ~ 60%/VE,, ILC/CLIC: o(E,) ~ 30%/VE,

- use combined information of tracker, ECAL + HCAL

to obtain better jet energy resolution keep these
as small as possible

¢ “Particle Flow”concept (simple but challengm?/ \

2
charged particles + O- N U

60% 30% 10% <+— contributions to E,,
tracker ECAL HCAL

2 —
o (E_/et) o photons neutral hadrons + Uconfuszon = Uthreshold

ei tc. K etc.

E{GeV)
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Particle Flow Performance

¢ Performance depends largely also on software algorithms

- “software compensation”
from Mark Thompson, CALICE-UK,

Cambridge
several algorithms are being PandoraPFA v02-a
developed : oc/E = alVE;; _
today best performing: Eer | |coso|<0.7 | °¢/Ei
PandoraPFA (M. Thompson) 45 GeV 0.227 3.4 %
100 GeV 0.287 2.9 %
180 GeV 0.395 2.9 %
250 GeV 0.532 3.4 %

* For 45 GeV jets, performance now equivalent to PandoraPFA v02-c.

23 %/ \"‘I‘E E ,_‘;__Z—mds * 45GeV Jeis
=2 F o 100 GeV Jets
g 250 Gev Jets i
energy range > 100 GeV still problematic =
but ... work in progress ! L os-
é Il.b_—_._—.—_’__.',__‘_ ___.':
¢ Does PFA work for CLIC at 3 TeV? = —— ——
- higher energies 01 02 03 04 035 06 07 08 ?fos'elu
-= particle separation in HCAL ~ few cm only
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PFA Alternative: the 4" Concept

¢ DREAM concept (Dual REAdout Module)

¢ Basic idea ) 2
- have calorimeter with absorber and two types of fibers . .
to measure EM and hadronic shower separately ~ z
clear fibers: sensitive to EM shower only via Cerenkov light
scintillating fibers: sensitive to both EM and hadronic shower 2.5 mm-
Triple Readout: sensitive to neutrons in late scintillating signal 4 mm
- hardware compensation

good energy resolution but still a sampling calorimeter (separate absorber + detector)

Copper

sampling fluctuations degrade resolution

¢ Can one do even better?

- have fibers both acting as absorber and detector
get ‘quasi-homogeneous”calorimeter

- need to find/develop heavy materials to be use as fibers
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Summary of CLIC Challenges + R&D

¢ Time stamping
- most challenging in inner tracker/vertex region
- trade-off between pixel size, amount of material and timing resolution
¢ Power pulsing and other electronics developments
- in view of CLIC time structure
¢ Hadron calorimetry
- dense absorbers to limit radial size (e.g. tungsten)
- PFA studies at high energy
- alternative techniques, like dual/triple readout
¢ Background
- innermost radius of first vertex detector layer

- shielding against muon background more difficult at higher E

¢ Alignment and stability
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Tentative long-term CLIC Scenario

Technology evaluation and physics assessment based on LHC results
for a possible decision on Linear Collider with staged construction starting
with the lowest energy required by physics

|

2007] 2008|2009 2010|2011 2012]2013]2014] 2015|2016 2017] 2018} 2019]2020| 2021]2022]2023

R&D on Feasibility Issues

Conceptual Design

R&D on Performance and Cost Tssues || S s o}
J/ l/

Technical design

Engineering Optimisation&Industrialisation

Construction (in stages)
Construction Detector

| !

Conceptual Technical Project First
Design Design approval ?
Report (CDR) Report (TDR)

Beam?

Linear Collider Physics School 2009 -CLIC Detector Michael Hauschild - CERN, 22-Aug-2009, page 32




	michael.pdf
	CLICdetector_2s

