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1. Introduction

More than twenty years ago it has been surprisingly discovered thatygattocity rotation
curves remain flat at large distances from the galaxy center while théydprsfile of luminous
matters rapidly decays (e.g. [1]). This is one of the strongest indicaticthe meed from dynami-
cally dominant dark matter in the universe. Most attention has been fooustx fact that these
bound gravitational systems contain large quantities of unseen matter anttieaténparadigm
has been developed in which non-baryonic dark matter plays a cer&alabonly in accounting
for the dynamical mass of galaxies and galaxy clusters [2] but also éeiding the initial seeds
which have given rise to the formation of structure via gravitational collfise

In current standard cosmological models, different forms of dark matéeneeded to explain
a number of different phenomena. In fact, the results of severahaigmms, such as the scale
size of fluctuations of the Cosmic Microwave Background Radiation (CM@R)., [4]), the mea-
surements of clustering mass on large scales (e.g., [5]), the magnitstéfreelation of type la
supernovae (SNe la) (e.g., [6]), are interpreted to give consistesumements of the amount of
dark matter. In this framework, baryon@g), which can be detected in the form of, for exam-
ple, luminous objects such as stars and galaxies, would only be the 5% otdhen&ss in the
universe; the rest is made of entities about which very little is understamtk rdatter and dark
energy. More specifically dark matter, in form of non-baryonic elemgrmgarticles, would con-
tribute to the~ 30% of the total mass of univers@g ~ 0.3). It is worth noticing that its direct
detection in laboratory experiments is still lacking and that the standard mbplatt@le physics
does not predict the existence of candidate dark matter particles with teesaeg properties from
a cosmological point of view.

Several evidences, from supernovae and other observationgs shat the expansion of the
Universe, rather than slowing because of gravity, is increasingly rapithin the standard cos-
mological framework, this must be due to a substance, which has been tdamednergy, that
behaves as if it has negative pressure. This is a mysterious form rgfyanbkich would cause the
accelerating expansion of the universe and it should account fort @086 (i.e.Qa ~ 0.7) of the
mass-energy in the Universe. It is thus not surprising that greatwais®al and theoretical effort
is devoted to the understanding of the nature and properties of dark nrattdaek energy which,
giving the main contribution to the mass-energy density of the universe,aptaicial role, for
example, in the problem of structure formation.

The previous discussion enlightens the fact that we know very little abeutature of cos-
mological dark matter both from a fundamental and observational pointewf VAlthough dark
matter is so central in modern cosmology its amount and properties can orefitiedda posteriori.
In this context a crucial question concerns a possible clear propedarkfmatter density fields
which is not arbitrary, i.e. a property which has to be satisfied by dark nfattguations under
some very general theoretical conditions. In fact, from the above shgmu it seems that much
freedom is left for the choice of dark matter, its physical properties arsiatsstical distribution.
However there is an important constraint which must be valid for any kinditél matter den-
sity fluctuation field in the framework of Friedmann-Robertson-Walker (fFRwdels and which
represents a consistency condition to be satisfied by any fluctuation frajgatitble with the FRW
metric. As we discuss below this must be imprinted both in the fluctuations of theRCM® in
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the large scale distribution of galaxies. This is represented by the conditauper-homogeneity,
corresponding in cosmology to the so-called condition of “scale-invagiafi.

2. Super-homogeneity in LCDM

According to standard theoretical models derived from inflationary mmeshms, the most
prominent feature of the matter density field in the early universe is thasiépte super-homogeneous
features on large enough scales [7]. To clarify the meaning of this comdigbus consider the
properties of statistically homogeneous and isotropic stochastic procedesesibing the matter
density field and its fluctuations. Let us firstly start with the simplest stochasitit process: the
Poisson distribution. In this case, particles are placed completely randonpgde $i.e. without
correlations), and mass fluctuations in a sphere of ragigeowth asR?, i.e. like the volume of
the sphere. This is thus a uniform (i.e. spatially homogeneous), statisticallpdgeneous and
isotropic (i.e. stationary) distribution. In addition to these properties, arswgraogeneous dis-
tribution shows the peculiar feature that mass fluctuations grow in the slpossible way, i.e.
slower tharR® [7, 8]. To be more precise, let us introduce the normalized mass variance

M(R)?) — (M(R))?

N
CR="MRE

(2.1)

where(M(R)) is the average mass irsphereof radiusR and(M(R)?) is the average of the square
mass in the same volurheGiven that for uniform system#/(R)) ~ R®, for a Poisson distribution
we find

0%*(R)~R73. (2.2)

On the other hand, for super-hnomogeneous systems the variancebelsav
0%(R) ~R ™%, (2.3)

which is the fastest possible decay for discrete or continuous distribJi@ng hus, the super-
homogeneous nature of matter distribution corresponds to the presames®fluctuations which
are depressed with respect to the uncorrelated Poisson case.

For example a perfect cubic lattice of particle is a super-homogenedessyadthough this is
not a stationary stochastic point process because of its intrinsic symmétriles former class, for
instance, we find the one component plasma (OCP), a well-known systéatigtical physics [9].
The OCP is simply a system of charged point particles interacting througluksiee 1/r potential,
in a uniform background which gives overall charge neutrality. Attierequilibrium, and for high
enough temperatures, the spatial configuration of charged particleassomogeneous (i.e. the

INote that in statistical physics the term “scale invariance” is used to deshghaass of distributions which are
invariant with respect to scale transformations. For instance a magystrsat the critical point of transition between
the paramagnetic and ferromagnetic phase, shows a two-point tiemefianction which decays as a non-integrable
power law. The meaning of “scale-invariance” in the cosmological coigeherefore completely different, referring to
the property that the mass variance at the horizon scale be consabe(ew).

2Hereafter we consider only the case in which the variance is computedpheaesof radiufR. Sometimes in
the literature Gaussian spheres are used; while this choice does allow emmadtally coherent formulation, from a
physical point of view it hides the important properties of super-ha@megus distributions (see discussion in [7]).
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glassy configuration). Simple modifications of the OCP can produce equititzarrelations of
the kind assumed in the cosmological context, as for instance in the LCDM ii@jdel

In the cosmological context the super-homogeneous nature of mattetydércguations in
the early universe, was firstly hypothesized in the seventies [10, 1BHubkequently gained in
importance with the advent of inflationary models in the eighties, and the demmstihat such
models quite generically predict a spectrum of fluctuations of this type. ddson for this peculiar
behavior of primordial density fluctuations is the following. In a FRW cosmptbgre is a funda-
mental characteristic length scale, the horizon sBalg). It is simply the distance light can travel
from the Big Bang singularity = O until any given time in the evolution of the Universe, and
it grows linearly with time. Harrison [10] and Zeldovich [11] introduced thiecion that matter
fluctuations have to satisfy on large enough scales. This is hamed theddafatdovich criterion
(H-Z), and it can be written as

05 (R=Ry(t)) = constant (2.4)

This conditions states that the mass variance at the horizon scale is cotigtacan be expressed
more conveniently in terms of the power spectrum (PS) of density fluctudiipns

P(K) = (18 () (2.5)

—

where &, (K) is the Fourier Transform of the normalized fluctuation figlr) — po) /o, being
po the average density. It is possible to show that Eq.2.4 is equivalent tma$¥k) ~ k (the
H-Z PS). In particular the initial fluctuations are taken to have Gaussiantissmésd a spectrum
which is exactly, or very close to, the so-called H-Z PS; in this situation matteitdison present
fluctuations of the type given by Eq.2.3 [7]. Since the fluctuations are<gayshe knowledge of
the PS gives a complete statistical description of the fluctuation field.

Let us briefly frame super-homogeneous systems comparing them to #reudiffiniform and
stationary distributions. Without loss of generality, let us supposeRfgt= AK"f (k), where
A > 0 andf (k) a cut-off function chosen such that (i) limp f (k) = 1, and (i) limc. k" f (K) is
finite. We also require > —3 to have the integrability d?(k) aroundk = 0 [8]. It is then possible
to proceed to the following classification for the scaling behavior of the narethmass-variance
in real space spheres [7, 8J:

R for —3<n<1
0%(R)~{ R GDjogRfor n=1 . (2.6)
R-(3+1) forn>1

For—-3<n< 0 (i.e.,P(0) = +»), we have “super-Poisson” mass fluctuations typical of systems
at the critical point of a second order phase transition [8]. frerO (i.e., P(0) = A > 0), we
have Poisson-like fluctuations, and the system can be csillestantially PoissanThis behavior
is typical of many common physical systems e.g., a homogeneous gas at theamicl equilib-
rium at sufficiently high temperature. Finally far> 1 (i.e., P(0) = 0), we have “sub-Poisson”
fluctuations, and thusuper-homogeneowystems [7, 8].

In order to illustrate more clearly the physical implications of the H-Z conditioe,may con-
sider gravitational potential fluctuatiodgp(r') which are linked to the density fluctuatiodg(r)
via the gravitational Poisson equatiani?d¢() = 4nGop (7). From this, transformed to Fourier
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space, it follows that the PS of the potentfg(k) = <]5(2)(R)|2> is related to the density PKk)
through the equation

Py(k) ~ T @7
The H-Z condition corresponds thereforeRg(k) [ k—3. In this case, the variance of the gravita-
tional potential fluctuations ig3(R) ~ 3Py(K)k®|,_r-1 [7]. The H-Z condition fixes this variance
to be constant as a function & This is aconsistency constrairih the framework of FRW
cosmology. Indeed, the FRW is a cosmological solution for a perfectly henmemus Universe,
about which fluctuations represent an inhomogeneous perturbatidendity fluctuations obey to
a different condition than Eq.2.4, then the FRW description will alwayskbdesvn in the past or
future, as the amplitude of the perturbations become arbitrarily large or sroalthié reason the
super-homogeneous nature of primordial density field is a fundamenfadipy independently on
the nature of dark matter. This is a very strong condition to impose, and itdeskven Poisson
processesR(k) =const. for smalk) [7]: indeed, in this case the fluctuations in the gravitational
potential may diverge at large scales.

Various models of primordial density fields differ for the behavior of theaP#rge wave-
lengths, i.e. at relatively small scales, depending on the specific prapbkyijmthesized for the
dark matter component. For example, for the case the Cold Dark Matterrgc@@BM), where
elementary non-baryonic dark matter particles have a small velocity dispethi® PS decays
as a power lawP(k) ~ k=2 at largek. For Hot Dark Matter (HDM) models, where the velocity
dispersion is large, the PS presents an exponential decay atdargi@wever at smalk they
both exhibit the H-Z taiP(k) ~ k which is indeed the common feature of all density fluctuations
compatible with FRW models. The scalg= kgl at which the PS shows the turnover from the
linear to the decaying behavior is fixed to be the size of the horizon at the tieguafity between
matter and radiation [3].

In terms of correlation functiog (r) (the Fourier conjugate of the PS) CDM/HDM models
present the following behavior for the early universe density field. iBh®sitive at small scales,
it crosses zero at a certain scale and then it is negative approachingite a tail which goes as
—r~4 (in the region corresponding ®(k) ~ k) [8]. The super-homogeneity (or H-Z) condition
corresponds to the following limit condition

/O°°d3r5(r) o, 2.8)

which is another way to reformulate the condition thatligP(k) = 0, i.e. P(0) = 0. This means
that there is a fine tuned balance between small-scale positive correlatbblzs@e-scale negative
anti-correlations [7, 8]. This is the behavior that one would like to detectendtita in order
to confirm inflationary models. Note that the Eq.2.8 is different, and muchgrpfrom the
requirement that anyniformstochastic process has to satisfy, i.e.dirg g2(R) = 0 [8].

It is worth noticing that the physical meaning of the constr&if@) = O is often missed in
the cosmological literature because of a confusion with the so-called “attegnstraint” , which
is another apparently similar, but actually completely different constrainis [atter constraint
holds for theestimatorof the two-point correlation function in a finite sample, and it may take
a form similar to the conditiori?(0) = O defining super-homogeneous distributions, but over a
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finite integration volume. These two kinds of constraint have a completely diffemggin and
meaning, oneR(0) = 0) describing an intrinsic property of the fluctuation field in a well-defined
class of distributions, the other a property of the estimated correlation faraftamy distribution as
measured in a finite sample. Their formal resemblance however is not coipplgteut meaning
and can be understood as follows: in a super-homogeneous distribugidluttuations between
samples are extremely suppressed, being smaller than Poisson fluctusttiarfiite sample a
similar behavior is artificially imposed since one suppresses fluctuations sxtaleeof the sample
by construction by measuring fluctuations only with respect to the estimatioe sathple density
(see discussion below) [7, 8].

The super-homogeneity prediction is fixed in the early universe denddywldch should be
represented by CMBR anisotropies. There are two additional phydarakeats which must be
considered for what concerns the matter density field we observe totlag fiorm of galaxies: (i)
evolution due to gravitational clustering and (ii) biasing [12, 15]. Let usflyrdiscuss these two
issues.

(i) Fluctuations in the matter density field provide the source of the Poissatienuor the
formation of structures. In LCDM models, this occurs in a bottom-up mannersiractures at
small scales are formed first and then larger and larger scales collapsiee linear regime it
is possible to work out the solution to the Vlasov-Poisson system of equaticars expanding
universe [3]. In this case it is easily found that fluctuations are lineaniglified during the linear
phase of gravitational collapse. Given the extremely fine tuning of ctioetacharacterizing a
super-homogeneous distribution one may wonder whether the growth tdfsales non-linear
structures may introduce some distortions of the PS at large scales. Anaargdirstly discussed
by Zeldovich [13] and recently refined by [14], states that the pertiofsto a mass distribution
introduced by moving matter around on a finite saglewhile preserving locally the center of
mass and momentum, lead to a modification to the PS at «r{a#. smaller than the inverse
of the characteristic length sca1q‘el) which is proportional t*. Since, as we have seen above,
the matter distribution has a PS which is proportionat &i smallk, this is not distorted by non-
linearities at small scales. The scale of non-linearity in current models isgkte- 10 Mpc/h,
and on larger scales the correlation function is only linearly amplified withectdp that of the
initial conditions. For this reason, gravitational clustering does not biteakuper-homogeneous
nature of matter distribution.

(i) In standard models of structure formation galaxies result fra@araplingof the underlying
CDM density field: for instance one selects (observationally) only the bighectuations of the
field which would represent the locations where galaxy will eventually foltnmas been shown
that sampling a super-homogeneous fluctuation field changes the natogalations [12, 15].
The reason can be found in the property of super-homogeneity ofesdistribution: the sampling
necessarily destroys the surface nature of the fluctuations, as it iné®duwolume (Poisson-like)
term in the mass fluctuations, giving rise to a Poisson-like PS on large $@dgs- constant.
The “primordial” form of the PS is thus not apparent in that which one weuloect to measure
from objects selected in this way. This conclusion should hold for anyrgem®del of bias and
its quantitative importance has to established in any given model [12]. Onthlee loand one
may show [12, 15] that the negative* tail in the correlation function does not change under
sampling: on large enough scales, where in these models (anti) correlatgosall enough, the
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biased fluctuation field has a correlation function which is linearly amplified vegipect to the
underlying dark matter correlation function. For this reason the detectisnaf a negative tail
would be the main confirmation of the super-homogeneous character ofrgi@indensity field
[8].

To conclude this brief summary about the statistical properties of standatelsnawe mention
the baryon acoustic oscillations. The physical description which givedaithese oscillations is
based on fluid mechanics and gravity: when the temperature of the CMBRo#tas tharn~ 1000
K, photons were hot enough to ionize hydrogen so that baryons atdshcan be described as a
single fluid. Gravity attracts and compresses this fluid into the potential webisiassd with the
local density fluctuations. Photon pressure resists this compressioatanghscoustic oscillations
in the fluid. Regions that have reached maximal compression by recombibatiome hotter and
hence are now visible as local positive anisotropies in the CMBR. Theipailqoint to note is that
while k—oscillations are de-localized, in real space the correlation function shalvaracteristic
corresponding feature at a certain well-defined scale. In parti§gtarhas a localized “bump” at
the scale corresponding to the frequency of oscillatiodsspace. This is not really surprising: it
simply reflects that the Fourier Transform of a regularly oscillating funags@nlocalized function.
Formally the bump of (r) corresponds to a scale where the first derivative of the correlation
function is not continuous [8].

3. Galaxy distribution: from inhomogeneity to super-homogeneity ?

The main information about the matter distribution in the present universe iieddrom
the analysis of the correlation properties of galaxy structures. As medt@ineve, in standard
models and in the absence of observational selection effects, Eq.218 bleosatisfied. However
the situation is not so simple and can be summarized as follows. On small seal&8 Mpc/h
strong clustering, driven by the non-linear phase of gravitationalmjes should have erased the
trace of the initial (linear) matter density field. On larger scales density fltichsshave only been
amplified by linear gravitational clustering. Thus for &@ < 150 Mpc/h the correlation function
should be positive, crossing zero at about 150 Mpc/h (the size of thélelinorizon at the time
of equality between matter and radiation) and then being negative, with &veegawer law tail
of the typeé (r) ~ —r—* at larger scales [7, 15, 16]. In the regime of strong clusteringy e 10
Mpc/h, one expects deviation from Gaussian behavior, while at largégssthe initial Gaussian
probability density function of density fluctuations should be perseveyelihbar gravitational
clustering.

3.1 Galaxy correlations: some contradictory results

There are several observations pointing toward the fact that galaictugtes are strongly in-
homogeneous at very large scales. However there are also meastsrerhim indicate that on
large enough scales fluctuations in the galaxy density field are small. It $kerass a contradic-
tory situation where different authors, employing different statisticaliegles, measure different
properties. To sort out the reasons behind this we should considethes® measurements have
been performed.
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There are two different statistical methods to measure fluctuations: thdsh détermine
field-to-field fluctuations or fluctuations as a function of redshifts, ansilhich instead measure
the amplitude ofelativefluctuations, i.e. by normalizing the observed amplitude of fluctuations to
the estimation of the sample density. We discuss some recent results obtainedttvithebhods,
emphasizing the contradictory results which have been obtained by diffanéhors. Then in the
next section we discuss that this paradoxical situation can be undetsfomaareful examina-
tion of the assumptions which enter in both determinations. An analysis of fingeefects will
ultimately solve this contradictioh

The counting of the number of galaxies, in samples with the same selectiots giffexertainly
a good although qualitative way to determine galaxy fluctuations. For instagoently, there
have been found several evidences of large scale fluctuations (eegsottalled “local hole”)
when counting galaxies as a function of apparent magnitude in the 2 deéigltdé€salaxy Redshift
Survey and in the Two Micron All Sky Survey [22, 23, 24]. these show éRistence of large
scale fluctuations of 30% with a linear size across the sky @00 Mpc/h. Similar large scale
fluctuations, extending over several hundreds Mpc have been fauBidan Digital Sky Survey.
In particular, it has been found that the apparent number density dftlyidaxies increases by a
factor= 3 as redshift increases from= 0 toz= 0.3 [25]. This is again the signature of a coherent
change in the galaxy density field over an enormous range of scale. &Ylgailaxy evolution can
also be responsible of such a behavior is a question which must be intedtigaefully, as in this
case one is comparing estimation of the local galaxy density as a functiodsbiiftg20].

On the other hand, most of standard measurements of galaxy correlatfis@uations are
based on the calculation of the two point correlation func§dn). For instance in a sample of
luminous red galaxy (LRG) of the Sloan Digital Sky Survey (SDSS) it wasidthat fluctuations
are of order 102 on scales of- 100 Mpc/h allowing a determination of the baryonic acoustic peak
followed by the zero-crossing scale &fr) [5]. However in other samples the situation is even
different. For instance in the 2dFGRS it was measured that the zersirgascale occurs at 50
Mpc/h [26], being thus fluctuations even smaller on larger scales.

In summary the measurements of galaxy fluctuations seem to show diffackooatradictory
results when different methods are used. However even the diffeedatvior ofé (r) in different
samples should be explained. This can be achieved through the cotisidefdinite-size effects.
We will give a brief introduction to the problem in the next two sections.

3.2 Large scale fluctuations, large scale inhomogeneity

An important assumption commonly used in the estimation of the amplitude and the spatial
extension of galaxy correlations is that the sample average gives a ralitielenination of the
“real” average density. The determination of the correlation fundfigm implies indeed such a
normalization. On very general grounds, this is a very strong assumptiai s not (exactly)
satisfied in any sample. Let us briefly explain why. The determination oflediwn properties of a
given stochastic point process depends on the underlying correlafitrespoint distribution itself
[8]. There can be different situations for the statistical propertiesysanof points (in the present
case, galaxies) in a finite sample. Let us briefly consider four differases [20].Inside a given

3The interested reader can read [17, 18, 19, 20, 16, 21] for fuditeils.
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samplegalaxy distribution is well-approximated byumiform stochastic point process, or in other
words,inside a given sampliéhe average density is well-defined, i.e. it gives a reliable estimation
of the “true” average density (modulo fluctuations). This means that theitdemeasured for
instance in a sphere of radiusandomly placed inside the sample, has small fluctuations. In this
situation the relative fluctuations between the average density estimator atididiedensity is
smaller than unity. Density fluctuations maybe correlated, and the correlatiotidn can bei)
short-ranged (e.g., exponential decay)igrlong-ranged (e.g., power-law). In other words these
two cases correspond to a uniform stochastic point process with (t-&rage and (ii) long-range
correlations.

On the other hand it may happen that, inside a given sample, galaxy distrisitom uni-
form. In this situation, the density measured for instance in a sphere osradindomly placed
inside the sample, has large fluctuations, i.e. it wildly varies in different nsgad the sample.
In this situation the point distribution can generally present long-rangelations oflarge am-
plitude and the estimation of the (conditiorfylaverage density presentsygstematiclependence
on the sample size. Then it may present, ¢@ge or not, cas€iv), self-averaging properties [20],
depending on whether or not measurements of the density in differemégidns show systematic
(i.e., not statistical) differences that depend, for instance, on the spas#ions of the specific
sub-regions. When this is so, the considered statistics are not statistidhlyesaging in space.
In this case, for instance, the probability density function of fluctuatiossesyatically differs in
different sub-regions and whole-sample average values are notnggamlescriptors. In general
such systematic differences may be related to two different possibilities: afiXtie underlying
distribution is not translationally and/or rotationally invariant; (ii) that the voluctssidered are
not large enough for fluctuations to be self-averaging. One may pedpecific statistical tests to
distinguish between these two possibilities [20].

Concerning the determination of statistical properties, a fundamental assanspsery often
used in the finite-sample analysis: that the sample density is supposed temaoeldble estimate
of the “true” space density, i.e. that the point distribution is well-represdmyehe case (i) or (ii)
above. In this situation the relative fluctuations between the average dessityator and the
“true” density is smaller than unity. In general, this is a very strong assumpfitich may lead
to underestimate finite size effects in the statistical analysis. For instances,deppose that the
distributioninside the given sampie not uniform, i.e. case (iii) and (iv) above. In this case the
results of the statistical analysis are biased by important finite-size effectbat all estimations
of statistical quantities based on the uniformity assumption (i.e. the two-poiriaton function
and all quantities normalized to the sample average) are affected, onlal,sop thisa-priori
assumption which is inconsistent with the data properties [8]. In addition, Vdriline case (iii)
one may consider a class of whole sample averaged quantities, i.e. corlditaiséics, in the case
(iv) these become meaningless.

In a series of papers [17, 18, 19, 20, 16] it was actually found thatarSthSS samples the
probability density function (PDF) of conditional fluctuations (i.e. not ndized to the estimation
of the sample density), filtered on large enough spatial scales (€30 Mpc/h), shows relevant

4Conditional statistics are not normalized to the sample density estimation (vghichlobal quantity in a given
sample) while they measure local statistical properties.
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systematic variations in different sub-volumes of the survey. Insteastles < 30 Mpc/h the
PDF is statistically stable, and its first moment presents scaling behavior witiativeeexponent
around one. Thus while up to 30 Mpc/h galaxy structures have well-defioerer-law correla-
tions, on larger scales it is not possible to consider whole sample avaragstigs as meaningful
and useful statistical descriptors. This situation is due to the fact thatygataxctures corre-
spond to density fluctuations which are too large in amplitude and too extendgxhde to be
self-averaging on such large scales inside the sample volumes: galaXyudiistr is inhomoge-
neous up to the largest scales, i.e. up to 100 Mpc/h, probed by the SDSS samples. A similar
results was obtained for the 2dFGRS samples. In addition in [21] we shihaeth the newest
SDSS samples, on very a large range of scales upt80 Mpc/h (where fluctuations in this sam-
ple show self-averaging properties), both the average conditionaltgemd its variance show a
nontrivial scaling behavior, which resembles to criticality. The density tépefor 10< r < 80
Mpc/h, only weakly (logarithmically) on the system size. Correspondingh®fimd that the density
fluctuations follow the Gumbel distribution of extreme value statistics. This disipibis clearly
distinguishable from a Gaussian distribution, which would arise for a honeagsrspatial galaxy
configuration. The comparison between determination of the PDF of cordlifilbictuations in
samples of different volumes clearly show the importance of finite-sizetsffe

These results are in agreement with the determination of field-to-field fluatgatiod of the
redshift distributions. However they seem to be in contradiction with the memsmts ofé (r):
they are so only in the sense that these determinations are strongly biafiadebyize effects
because on the a-priori assumptions on which they are based, andthoisallow one to properly
measure fluctuations and correlations of galaxies in the current samples.

3.3 Super-homogeneity in the matter distribution ?

In order to illustrate the problems related to estimations of the (possible) bopegeneous
property in future galaxy surveys, let us briefly discuss some finiteesieets that would affect the
measurements of the correlation function even in the case where the samgity deconstant as
a function of the sample size, i.e. it does not show a systematic dependdiocdtee real data. In
this case the sample density differs from the “real” average density (infiolitene limit) because
there are finite-size fluctuations.

Let us callX(V) the statistical estimator of an average quanfiy in a volumeV (where(X)

denotes the ensemble average ArtHe sample average). To be a valid estimat(y) must satisfy

(8]

lim X(V) = (X) . (3.1)

V—oo

A stronger condition is that the ensemble average of the estimator, in a finiteedlus equal to
the ensemble averag¥):

(X(V)) = (X). (3.2)

An estimator is called unbiased if this condition is satisfied; otherwise, therg/gdensatic bias in
the finite volume relative to the ensemble average. Any estinggtorof the correlation function
&(r), is generally biased. This is because the estimation of the sample mean deriaggdsvishen
correlations extend over the sample size and beyond. In fact, the most coestitmator of the
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average density is

N
=~ 3.3
n=g, (3.3)

whereN is the number of points in a sample of voluielt is simple to show that [8]

) = (n) <1+$/V d3rf(r)) . (3.4)

Therefore only in case wheé(r) = 0 (i.e. for a Poisson distribution), Eq.3.3 is an unbiased
estimator of the ensemble average density.
The correlation function can be written, without loss of generality, as

g(ry= MON@) 4 _ e (35)

n3 No

where the conditional density(r)), = (n(r)n(0)) /ng gives the average number of points in a shell
of radiusr and thicknesslr from an occupied point of the distribution. Thus the estimataf (©f
can be simply written as [8]

w: (n(r>>p —1, (36)

n

wherenis the estimated number density in the sample(@d) ) , is the estimator of the conditional
density. The latter can be written as

Ne(r) '
(n(r))p = Ncl(r) ; AN,A(i,/Ar) ’ (3.7)

whereAN;(r,Ar) is the number of points in the shell of radiusthicknessAr, and volumeAV =
4rr2Ar centered on thé" point of the distribution. Note that the number of poiNtgr) contribut-
ing to the average in EQ.3.7 is scale-dependent, as only those points sigeced such that when
chosen as a center of the sphere of radjukis is fully included in the sample volume [15] The
sample density can be estimated in various ways. Suppose that the samplérgéosimply a
sphere of radiu®s. The most convenient estimation in this context is to choose

n-— L;Rg/:s(n(r))&mzdr : (3.8)

as in this case the following integral constraint is satisfied

R — 2
/O E(r2dr=0. (3.9)

In Fig.1 we show the finite-size effect of the integral constraint, in samldéferent sizes,
for the case of a LCDM correlation function. One may note that that wheseitmple size iRs < r¢
(wherer is the zero-crossing scale) both the amplitude and the zero-crossingezalfected by
a strong bias. Instead whéfa > r thetail of the correlation function is distorted with respect to
the “true” shape.

Note that the condition given by Eq.3.9%atisfied independently of the functional shape of the
underlying correlation functio (r) and for all R;! In addition, note that this condition holds in

11
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Figure 1: Expected estimation of the LCDM correlation function in sd@s of different sizes (from [15])

a finite sample, while the super-homogeneity condition (Eq.2.8) holds imfinége volume limit.
Therefore, in the case in which the difference between the sample avamdghe infinite volume
limit average is due to fluctuations (cosmic variance), in order to detect theppint properly
one must check that this is stable as a function of the sampldzgiz&nother way to look at the
standard determinations of the correlation function previously mentionedjegdnto check that
the zero point does not change in different samples of different 3izis. is in fact the case, and
thus our conclusion is that the measured shape and amplitude of the conrilatition is strongly
biased by (uncontrolled) finite size effects.

4. Super-homogeneity in the Cosmic Microwave Background ?

Primordial density fluctuations have imprinted themselves not only in the mattabudi&tn,
but also on the patterns of radiation, and those variations should be tétentthe CMBR. Three
decades of observations have revealed fluctuations in the CMBR of aneptifuatder 10° [4].

It is in fact to make these measurements compatible with observed structurédgheecessary
to introduce non-baryonic dark matter which interact with photons onlyitgténally, and thus
in a much weaker manner than ordinary baryonic matter. Thus in standarelsvafdstructure
formation dark matter plays the dominant role of providing density fluctuatiedsse/hich, from
the one hand are compatible with observations of the CMBR and from thel@hdithey are large
enough to allow the formation, through a complex non linear dynamics, of thgygstructures we
observe today. In standard cosmological theories the CMBR represéeritige between the very
early universe and the universe as we observe today and in partivellgalaxy structures. On the
one hand the CMBR probes the very early hot universe at extremgiesd¢hrough the theories
proposed — notably “inflation” — to explain the origin of these perturbati@rs.the other hand
the anisotropies reflect the local very small amplitude perturbations whielttgg initial conditions
for the gravitational dynamics which should subsequently generate theygatactures observed
today.

12
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In the CMBR one measures fluctuations in temperature on the sky i.e., on thgataghere.
We will not enter here into the detail of the physical theory in standard medalsh link these
temperature fluctuations to the mass density field [27]. It is useful howevevhat follows to
give the precise relation between the two quantities. The temperature flucmﬂ% =

‘ST—T(B, @) , where@ , ¢ are the two angular coordinates, is conventionally decomposed in spherica

harmonics on the sphere:
oT >
(9 P)=> > am¥m(6,9). (4.1)

I=0m=—¢
The variance of these coefficieralg, is then related to the matter power spectrum through

H4
= (Jam® = 50 [k itk (42

where j, is the spherical Bessel function amd~ 2H61 is a constant at fixed timeHg is the
Hubble constant today). Note that the ensemble average contains rmaldape orm because of
the assumption of statistical isotropy. TakiRgk) ~ k in (4.2) we get that thé > 2 multi-poles are
given byC, ~ (¢(¢+1))~1, so that the H-Z condition for the power spectram 1 corresponds to

a constant value of the quantity? + 1)C,. For this reason it is usually in terms of this combination
of £ andC;, that the data from the CMBR are represented.

The WMAP team [4] has found that the two point correlation func@gf), simply obtained
from theC,, nearly vanishes on scales greater than about 60 degrees, contndrgt the standard
theories predict, and in agreement with the same finding obtained from C@tblout a decade
earlier [28]. Recently it was confirmed [29], by considering the WMAR#rand five-year maps,
the lack of correlations on angular scales greater than about 60 dedraéevel that would occur
only in 0.025 per cent of realizations of the LCDM model. Moreover, pddrity puzzling are
the alignments of low multi-poles with the solar system features [30, 31], i.e. ligmareents
between the quadrupole and octopole and between these multipoles andrtetrgenf the Solar
System. This would imply that CMBR anisotropy should be correlated with oal leatbitat. A
possible conclusion is that the observed correlations seem to hint thatisheyntamination by a
foreground or that there is an important systematic effect in the data [@ie recently Cover
[33] found that there are substantial differences at large scale/jldetween the WMAP and
the preliminary maps provided by the Planck satellite, concluding that thenmeesé systematic
effects at large angular separation could possibly explain the pecdiarés found in the WMAP
and COBE data (see also [32] and references therein). It was thed fbat the amplitudes of the
low multipoles measured from the preliminary Planck satellite data, are signifidanigy than
that reported by the WMAP team [34]. Actually it was concluded that thedRl&rst light survey
image strongly supports the artificial origin of quadrupole observed in WM#aps and that the
real CMBR quadrupole is most possibly near zero.

In summary from the observational point of view, at present one is blet ® determine
whether fluctuations in the radiation and matter density fields really show tbi@ksuper-homogeneous
features. However if it will be confirmed by the Planck mission that the ternyrer®SC, of the
CMBR does not decay as/ (¢ + 1)) at low ¢, this would put in troubles the whole scenario of
galaxy formation models based on the inflationary paradigm, i.e. the “scaddnt’ nature of
matter density fluctuations.
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5. Conclusions

In summary galaxy structures are highly inhomogeneous up to scales @@, or more
as indicated by field-to-field fluctuations. This situation is in contradiction withpttegliction
of the LCDM model in which the scale beyond which the distribution should fpeconiform
is about 10 Mpc/h. We have discussed the problems related to finite sizéseffieich must be
carefully considered in the analysis of spatial correlations. These fiiziéeeffects are responsible
for the contradictory results obtained by different authors with diffestatistical methods or by
considering different galaxy samples.

In addition we discussed that the super-homogeneous nature of mattexddaibn has not
been detected, neither in galaxy catalogs nor in the CMBR anisotropies.e llatter case the
situation is very puzzling as indicated by recent results. This situation caligfiore deep analysis
of the foundations of the standard model of galaxy formation.
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