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Motivated by cosmological first-order phase transitionsawamine the nucleation and evolution
of vacuum bubbles in non-vacuum environments. Non-stahbackgrounds can be relevant in
the context of rapid tunneling processes on the landscapiksihng complex time methods, we
show that tunneling rates can be notably modified in the cisdgnamical FRW backgrounds. We
give a classification of the importance of the effect in teahthe relevant dynamical time scales.
For both the bubble nucleation and evolution analysis weaniak of the thin-wall approximation.
From the classical bubble evolution on homogeneous maitskgrounds via the junction method,
we find that the inflation of vacuum bubbles is very sensitivilné presence of ambient matter and
quantify this statement. We also employ inhomogeneousematodels (LTB) and models that
undergo a rapid phase transition (FRW) as a background acedsd in which cases potentially
observable imprints on the bubble trajectory can remain.
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1. Motivation

Given the cosmic no hair conjecture, as well as the very ldatimes of metastable states on
the landscape, cosmological tunneling has been studietynistween pure vacuum states. How-
ever, in the context of the string landscape there are rgcpriposed scenarios where tunneling
can be catalysed. When very rapid tunneling occurs a vacwlnblé can nucleate and find itself
on a non-vacuum background that had not enough time to etolaale Sitter spacetime. Rapid
tunneling occurs for instance in chain inflation [1] wheremwaoupled fields are at work providing
a series of catalysed tunneling processes through manynaion the landscape, or in the context
of resonance or DBI tunneling [2, 3].

Here, we will study the nucleation and the classical evotutdf vacuum bubbles on non-
vacuum backgrounds in the thin-wall approximation; for aenample treatment see [4]. A back-
ground we utilise for both analyses is a flat FRW model that seifve as the setting for ambient
phase transitions, like reheating. For the nucleation\warstudy the effects of a power law inflat-
ing FRW background on the tunneling rates, using a comphes gath formalism. For the classical
part we probe the effects of homogeneous (FRW) and inhoneagen(LTB) matter backgrounds
on the evolution of the vacuum bubbles by employing Isrgefistion method [5]. Note that inho-
mogeneous backgrounds can also be relevant in the conteeg@fance tunneling, cf. [6, 7, 8].

2. Tunnding Rates

The semiclassical calculation of tunneling rates betwé¢ates of pure vacuum differing only
in their values for\ is a well known and commonly used result, first carried out bje@an and
De Luccia (CdL) [9]. CdL tunneling produces a bubble of newwam whose interior, and this is
the main result of the CdL calculation, is also a de Sittecepme and thus can be used to model
inflation. Hence, spherically symmetric bubbles of new wewiexpand into the old vacuum and
so a first-order phase transition (PT) can be realised.

However, the CdL mechanism and its variations rely on thdgiaating states to be in a pure
vacuum. Here we want to relax the de Sitter symmetry of thialrétate and see how this can
affect the tunneling rate. Of course, it is not at all cleawho do a calculation of tunneling rates
on completely arbitrary backgrounds, and so we diverge littly from de Sitter spacetime in that
we are taking background Friedmann universes in this seetldch will affect the tunneling rate
through their time-dependent Hubble rate.

Assuming spherical symmetry, a flat FRW background, andectigh gravitational backre-
action, the dynamics of the bubble becomestalldimensional problem with the effective action

s= [an | et —ano P my/i-@rme|. e

wheren denotes conformal time the coordinate radius of the shellthe latent heat of the vacuum
and o the bubble surface tension. The scale factor enters thdiegsiaf motion and introduces
an explicit time dependence and this will make the tunnaiaig time dependent as well.

In [10] a compendium of how one can treat tunneling processtise dependent setups has
been presented. Here we want to apply these techniques &xaneple of gpower law inflating
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backgrounga = (nl/n)”“ with a(n1) = 1, and thereby analyse the effects of a time dependent
background on the tunneling rate. Note that for small de&tions a this is just an inflationary
slow-roll solution with slow roll parameterg;H /H? ~ a. For a power law inflation we get, after
some transformations, the following equation of motiomfrihe action

1+a 2
€ (M [y 2 gn  l+a Ul
0<n> (o) r T (@)1 22

This is an equation fon (r), which is an analytic (in general) complex function of rewments

r ranging between 0 ang@. We can solve it only numerically, taking into account theuthdary
conditions for the canonical momentupairng) = 0 as well adn (0) = 0. We have carried out a
parameter study with regard to the relevant model paraseteyo/n1 ande /o and found that the
following three characteristic time scales can be used sorid#e the physical behaviour: the time
scalety, given by the inverse Hubble rate™ (1), on which the background (scale factor) changes,
the time scalé¢,; on whichH itself changes, given btﬂtH/Hrl (higher order derivatives of the
expansion rate vanish in power law inflation), as well asitjte kcrossing time for the bubbtgss

(A) in case that the crossing time is the smallest scale iséing, i.etcoss< th, tyy, we find that
the Minkowskian result By = @g—: for the tunneling rate is a good approximation. Then, if
the bubble crossing time scale is not much smaller than tregse Hubble scalés oss> th, there
are two possibilities. (B) if the rate of change of the Hubtihee is still the largest time scale
tH, teross <<ty We find that our result for the tunneling rate in de Sitter spiace

ImSys = élg—ﬁsinr?%ln <1+(3Ha/s)2) (2.3)

in the quasistatic limiH = H (no) is a good approximation. However if finally (C) the crossing
time cannot be regarded as small w.r.t. any other time stglg> t,;, then the tunneling process
does become susceptible of the background dynamics. In(€aske changing rate of expansion
can have a significant effect on the tunneling rate as our rinat@nalysis confirms — in fact the
tunneling rate in this case is enhanced w.r.t. the quaisistpproximation. Trying to exploit the de
Sitter result (2.3) in order to approximate the non-trildahaviour of case (C) one should, instead
of fixing H = H (no), average the expansion rate over one bubble crossing tinge rarior to
tunneling and then insert the averaged Hubble rate intd, (22 Fig. 1.

Another background also possibly of interest for chain tidtais a radiation dominated FRW
universe with cosmological constant. Due to the cosmic aio-fheorem in its far future this
universe will be vacuum dominated. However, its early phakere it is radiation dominated is
characterised by a rapidly decreasing Hubble rate and saytiemics may have consequences on
the tunneling rate similar to the power law inflationary ca§ie difference is the existence of
a particle horizon. The horizon scaleAist, as are the two background time scales. Because of
causality the bubble crossing time is bounded by the hoszate and thus it cannot become larger
than any of the background time scales. As a consequencerigeiions from dynamics should in
general be small. Also, in the background spacetime thestsean initial singularity. A numerical
analysis shows that the rates for nucleation of bubbles afitahorizon scale become sensitive to
the evolution of the background scale factor up to the vigiof the initial singularity. Thus, the
rates for such bubbles become sensitive also to the detadh@ating and even earlier physics: the
classical horizon problem also occurs in the context of uattunneling.



1st-order phase transitions beyond the standard inflatigisaenario Aleksandar Raki

1.0p= ‘ ‘ I
\.\\\
"f\\ teross~ 2tH
091 <N -
0 AN
(ﬁ 0.8 R |
E
~ \\\
) .
£ 07 >
osl  -- propertime average . ° |
---- conformal time average .
I | I |
0'?)‘0 0.1 0.2
|OH /H?|

Figure 1: Considering a FRW background with power law inflation nurcarivalues for the tunneling
rate as a function of the slow roll paramedif /H? are given (black circles). The values are normalised to
the quasistatic approximation, that is the limit of the kefar the tunneling on de Sitter background (2.3)
when fixingH = H (no) with no denoting the nucleation time. Three typical time scalesatable here and
their comparison can help to categorise the dynamics ofuheeling process. These are the bubble light
crossing timegross the inverse of the background Hubble riateas well as its respective rate of change
Only when the bubble crossing time is not negligible w.iathof the other two time scales the dynamics of
the background becomes significantly important for the éling rate and neither the Minkowskian nor the
quasistatic limit are good approximations. One can imptheejuasistatic estimate by employing a proper
time averaged (dashed red line) or conformally time avetgdetted green line) Hubble rate in (2.3).

3. Classical Evolution

In this section we want to study the (subsequent) classicdlition of a bubble on dynamical
backgrounds, cf. [11]. Like in the previous section we asstime bubble wall to be thin compared
to its size. The spacetimes of the de Sitter bubble and thientetckground will be matched along
a common spherically symmetric hypersurface with inducedrimhy; dy'dy! = —dr? + R?dQ?,
stress-energ$; = —oh;; and the bubble surface tensiorknown from the preceding section. As
the dynamical background spacetime we employ the sphigrieginmetric and radially inhomo-
geneous Lemaitre-Tolman-Bondi (LTB) solution [12]:

(réa(t,r)+a(t,r))?

_ __H2
d* = —dt*+ 1+ 2E(r)

dr? 4+ &2(t,r)r2dQ? . (3.1)

The free functiorE(r) can be interpreted as either a measure of the local spatiatove or as a
measure of the total energy per unit mass of a shell at givdinga. Including dust and vacuum
energy we get the following Einstein equations

aa\?> 2E 2M A 20;:M
- -_——=——4+— and 8M=———— . 3.2
( a 2 B33 P ar2(roa+a) (3.2
Here, M(r), the total mass within a given shell of radiusis another free function and a third

free function (the bang time) arises from the integratiorthef scale factoa. But there is also a
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remaining gauge freedom mand, wherng;M > 0, one can rescalesuch that the functioi(r)
becomedM(r) = 4?’TAr?‘, whereA is a constant.
For our setup the junction conditions yield the followingiations of motion in the LTB frame,

__ —(1+2E)rda+/(1+2E)(1+2V)

aF (rdra+a)ar
(rdra+a) (2E —2V)

\/1+2E - (fora+ )2 (47>

Y ao=p . (33)

wherer(t) denotes the bubble trajectory in LTB coordinatéss (rd;a)? — 2E + 2V with an effec-

2
tive potentialV = — [% + (ﬁ +00 2na> } %. There is a geometrical constraint on the

surface tension due to the glueing procedureg & /8% 4 220,

We first consider théhomogeneous limivf the LTB background, which can be obtained by
imposing a homogeneous initial density distribution aslasla vanishing local curvature. The
evolution of a comovingly nucleated,{ = 0) bubble of new vacuum on such background substan-
tially depends on the pressure balance and so on the rel#tigsurface tension to latent heat and
dust density. The initial force balance can be obtained figréntiating (3.3),

1/A A 2
Py = = <+7—2n0——p> . (3.4)

a 240 30

The vital difference to nucleation on vacuum is that the dbstructs the expansion of the bubble,
eventually leading to a contraction. One can understargdftbm the competing forces: on the
one hand the bubble tends to collapse under its surfaceteanid on the other hand the pressure
induced by the latent heat of the vacuum (with > A_ > 0) works to expand the bubble. On a
vacuum dominated backgrouid < pyac= /A /81) the pressure force is able to outweigh surface
tension. We find however that in a matter dominated backgtdhe presence of dust effectively
makes the pressure support incapable of upholding the sipaaf the bubble, see Fig. 2 (left).

Next we will study bubble evolution on the radialighomogeneous LTB backgroun®ur
aim is to probe whether the transition of the domain wall tigto background inhomogeneities can
disturb the bubble trajectory. To implement inhomogeasitn the LTB model we can use the local
curvature functiorE(r) as well as the initial density profileg(r) = p(to,r). Recalling the results
of the homogeneous limit, we see that the bubble would hdrelgpble to arrive at the inhomo-
geneities because of the dust in the background. A numesiadly indicates that even relaxing
the condition of a comoving nucleation, i.e. consideringubtide withdr(tg) > 0, does not save
the bubble from collapsing whenever there is enough dustdrbackground. Nevertheless, there
exist combinations opy(r) andE(r) for which the bubble can reach ambient curvature inhomo-
geneities. For a radially growing initial dust profibg(r) small nucleated bubbles find themselves
in a vacuum dominated region and are able to expand initiefilyrig. 2 (right), and can so reach
the curvature inhomogeneities. We numerically tracedrdjedtories of these bubbles: for (poten-
tially physical) interior observers there appears no diffiee w.r.t. the corresponding trajectories
in the homogeneous limit, cf. Fig. 3. Note, however, thatahwelitude of the curvature profile is
additionally constrained by demanding the absence of shedking singularities.

Another interesting dynamical background is a FRW modeltaiaimg a perfect fluid that
undergoes a rapid PT (e.g. reheating) while the vacuum bubbagates through it. A numerical



1st-order phase transitions beyond the standard inflatigisaenario Aleksandar Raki

matter dominated universes possjble 15\ ]
all universes vacuum dominatgd
o | | < , i
] 1.0
s | | =
~ —
Q q
0.5 —
AN : 1 I |
Qﬁ\o"f forbidden 05r |
L o2 Qo i r 1
R
%0
| 2t i
. I
0 \ ° \ \ 00
0 0.5 1 15 2 25 0.0 0.5 1.0 15 20 25 3.0
67102/ &yac A, /3t

Figure2: Left comovingly nucleated vacuum bubbles on a flat FRW backgtauith dust and cosmo-
logical constant (homogeneous limit of LTB). Shown are thegible initial bubble trajectories (as seen by
comoving FRW observers) in the parameter space of the gioxgliorce balance quantities: the dust density
p, surface tensiow and the latent heat of the vacuwsp: = (A+ —A_) /8m, cf. (3.4). The expansion of
de Sitter bubbles that is generic in the case of a pure vacaahkglpound is here seriously hindered as long
as the environment is matter dominat@d> pyac = A /8m). The forbidden area is due to a geometrical
constraint from the junction methodright an LTB model with inhomogeneous initial dust distribution
does allow expanding vacuum bubbles. Assuming, gy, O r® vacuum bubbles that have large nucle-
ation scales are already in a matter dominated environnmeidige prevented from expanding while smaller
nucleated bubbles find themselves in a yet vacuum domineggolr and may initially expand.

study confirms that the PT of the background does changeajeetiory of the bubble notably and
that, unlike in the previous case, this can also be seen fnermterior, see Fig. 4.

4. Conclusions

Rapid tunneling processes on the landscape may give ride taucleation of bubbles of new
vacuum on a diversity of backgrounds. This kind of first-oféd&s can be relevant for cosmological
scenarios, like e.g. chain inflation. Therefore the numeaas well as the evolution of de Sitter
bubbles, which can be toy models of inflation, on any noneksieshbackgrounds is worth studying.

Concerning the nucleation of vacuum bubbles we have ardtyeepossible effect on the tun-
neling rate with an explicitly time dependent power law itiflg FRW backround. We found that
the rate can indeed be enhanced w.r.t. the quasistatic doMkian approximations, if the cross-
ing time scale of nucleated bubbles is larger than the tinadesacharacterising the background
dynamics. We have also seen that in a radiation dominatekbmmd the particle horizon con-
strains the nucleation scale of bubbles and that bubbldeated with about horizon scale become
responsive of details of the cosmology close to the Big Bang.

In order to study the classical evolution of a de Sitter baldoh non-standard backgrounds
we used Israel junction conditions to model bubble propagah a matter environment. We saw
already in the homogeneous limit that dust dominated backgts prevent bubbles from growing.



1st-order phase transitions beyond the standard inflatigisaenario Aleksandar Raki

0.0 05 1.0 15 2.0

Figure 3: Numerical evolution of a vacuum bubble on an inhomogeneaitsambackground (LTB). Ex-
panding bubbles are realised in an inhomogeneous init&l distribution and are then traversing an addi-
tional curvature inhomogeneity of the LTB model - the cuavatprofile is shown in thepper left panel
Comparing bubble trajectories on homogeneous (red) arahiolgeneous (blue) background, a significant
difference is only seen in the exterior framupper righ), while in the interior coordinates the transition oc-
curs notelesd@wer lef). The sizeable effect of the transition in the evolutiontaf bubble surface tension
(lower right) is to be considered as an artefact of the junction methderahan a physical effect.

Nevertheless, for the inhomogeneous LTB backgroundalhjitexpanding bubbles can be found.
We numerically studied the effect of ambient inhomogeneitysuch bubbles and found that pos-
sible disturbances of the wall trajectory would not be segimbide observers. We also analysed
the effects of a rapid PT in a FRW background (e.g. reheati@g)y analysis suggests that in this
scenario perturbations of the bubble wall are present alsolfservers inside the bubble.

Within the context of primordial bubble collisions it hasgmepointed out [13, 14] that similar
disturbances of the bubble trajectory could in principleobeervable in the CMB.
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