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As the Einstein equations are non-linear, spatial averaging and temporal evolution do not com-

mute. Therefore, the evolution of the averaged universe is affected by inhomogeneities. It is,

however, highly controversial how large these cosmological backreaction effects are. We use the

supernova data of the Constitution set up to a redshift of 0.1in order to analyse to what extent

the measurement of the Hubble constant is affected. The sizeof the effect depends on the size of

the volume that is averaged over. The observational resultsare then compared to the theory of the

backreaction mechanism.
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1. Introduction

In cosmology it is very common to assume a homogeneous and isotropic universe. As we
know that there exist structures in the universe [1], this homogeneity and isotropy can only be
statistical on large scales [2], but not exact. Due to the non-linearity of Einstein’s equations spatial
averaging and temporal evolution do not commute. Thus, local inhomogeneities can affect the
expansion of the background universe via the so-called backreaction mechanism [3, 4, 5, 6]. In
this work, we probe the influence of backreaction on the measurement of the Hubble rate using
supernova type Ia data.

2. Averaging

Many observables are averaged quantities. As all observed objects lie on our past light cone,
it would be appropriate to average the observables over thislight cone. This is however a very
difficult task that has not been achieved yet. Instead one canuse spatial averages at the cost of
introducing an error. In order to keep this error at an acceptable level, it is necessary to limit the
use of spatial averages to low redshifts. In our analysis we use supernovae up toz= 0.1. In that
range, this averaging method is justified.

The averages of observables are calculated within a certaindomainD. Its volume is given by

VD(t) ≡
∫

D
WD(x)

√

detgi j dx , (2.1)

whereWD(x) is the window function specifying the domain. Then the spatial average of an observ-
ableO within D is

〈O〉D ≡ 1
VD(t)

∫

D
WD(x)O(t,x)

√

detgi j dx . (2.2)

An effective scale factoraD can be defined via the domain volume:

aD

aD0

≡
(

VD

VD0

)1/3

, (2.3)

where the subscript 0 denotes the present time. The effective Hubble rate then determined by

HD ≡ ȧD

aD
. (2.4)

Following Buchert’s formalism, the Einstein equations canbe averaged in order to obtain the
effective Friedmann equations for a dust universe [5]:

(

ȧD

aD

)2

=
8πG

3
ρeff , (2.5)

− äD

aD
=

4πG
3

(ρeff +3peff) . (2.6)

These equation include the energy density and pressure of aneffective fluid, which are given by

ρeff ≡ 〈ρ〉D − 1
16πG

(〈Q〉D + 〈R〉D) , (2.7)

peff ≡ − 1
16πG

(

〈Q〉D − 1
3
〈R〉D

)

. (2.8)
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〈Q〉D denotes the kinematical backreaction and〈R〉D the averaged spatial curvature.
We want to analyse the influence of backreaction effects on the measurement of the Hubble

rate. Its average value obtained by observing objects within a domainD is denoted asHD. Assum-
ing that there exists a global valueH0, we can define the fluctuation of the Hubble rate as

δH ≡ HD −H0

H0
. (2.9)

Without backreaction the average valueδH equals zero. Considering backreaction effects, the value
of δH becomes slightly negative for small domain sizes. But the main effect is that the variance of
δH is increased compared to the case when backreaction effectsare not taken into account.

3. Gaussian window function

3.1 Method

It is not obvious which choice of window function yields the best results for a test of backre-
action effects. The first try was to assume a spherically symmetric domain described by a gaussian
window function

WD(r) =
1√

2πRD
exp

(

− r2

2R2
D

)

, (3.1)

whereRD specifies the size of the domain. Then the variance ofδH due to backreaction effects is
given by [7]:

Var(δH) =
25

486π3

1
(1+z)2

(

RH

RD

)4∫ ∞

0
Pϕ(x/RD)J2

3/2(x)dx , (3.2)

whereRH is the Hubble radius. The values for the power spectrumPϕ are taken from WMAP5
measurements [8].

For the analysis, we use supernova type Ia data from the Constitution set [9] up to a redshift
of 0.1. We used the data that were fitted with SALT2 [10]. The number density of SNe needs to
be approximately constant within the considered domain. Thus, the number of SNeN(r) in the
distance interval[r, r + dr] must be proportional tor2WD(r). That means that we have to choose a
subset of SNe, whose distribution in space corresponds to that of the considered window function.

Figure 1a shows the distribution of the 178 SNe in the Constitution set up to redshift 0.1.
For the test of backreaction effects, it is essential to compare the value ofδH of differently sized
domains. The domain size can be changed by varyingRD as given in equation (3.1). We chose
to use five domains. Their corresponding window functionsr2WD(r) are plotted in the figure, the
black curve being the sum of these functions. However, the window functions only determine how
many SNe at a certain distance are assigned to a subset, but not which individual SNe. The actual
assignment of SNe to a subset within one realisation is done randomly, but in a way that all subsets
are disjoint and thus statistically independent. As soon asone uses many realisations, i.e. different
assignments of SNe to the subsets, the statistical independence is lost.

In order to calculate the Hubble rateHD, we need to know the redshiftz and the distance
modulusµ for each supernova. The distance modulus, however, dependson the calibration of the
absolute magnitude of the SNe. Thus, a different calibration leads to different values ofδH , if one
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Figure 1: Gaussian window function. (a) Distribution of theSNe andr2WD(r) for five different val-
ues ofRD = 45,60,80,100,120. The black curve is the sum of all five window functionsr2WD(r).
(b) δH obtained from ten different realisations of subsets. Also shown are the variances with and
without backreaction.

uses a globalH0 that was not obtained by using the same data set, but by other observations such
as WMAP. It turned out that the test result is very sensitive to the calibration. Therefore, we have
to determineH0 using the same data set as for calculatingHD.

3.2 Results

Figure 1b showsδH for ten random realisations of subsets. The five data points obtained from
the five subsets in each realisation are connected by lines.r is the average distance of the SNe in
a subset. The pink curves indicate purely the measurement errors of the SNe. For the red curves
√

Var(δH) from equation (3.2) is added in quadrature to the measurement errors. Here, the domain
scaleRD has to be expressed in terms of the average distance asRD =

√

π/8r. The global Hubble
rate that is needed for the calculation ofδH was chosen such that the data points at large distances
lie within the variance limits. There is a trend of increasing δH with decreasing distance. The model
with backreaction effects seems to describe the data betterthan the one without these effects.

In order to test backreaction effect, we need however a more quantitative analysis. Therefore,
we determined the optimalH0 for each realisation once with and once without backreaction effects.
Then we calculated the likelihoods of each model given the data. In 27 out of 100 realisations the
model including backreaction effects was favoured. However, in none of the realisations one of the
two models was favoured significantly.

4. Tophat window function

As it was not possible to detect backreaction effects using agaussian window function, we
tried a different ansatz. Since backreaction effects are larger at smaller distances, our aim was to
minimize the distance of the first data point. This can be achieved by only using the nearest SNe to
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Figure 2: Tophat window function. (a) Distribution of SNe. (b) δH obtained from the SN subsets.
Also shown are the variances with and without backreaction.

calculate the first data point. So we binned the SN data according to distance, where the binwidth
is increased with increasing distance (see figure 2a). The corresponding window function is

WD(r) = Θ(RD)Θ
(

r − 5
3

RD

)

. (4.1)

Then the variance ofδH is given by

Var(δH) =
2025

153664π2

1
(1+z)2

(

RH

RD

)4∫ ∞

0
Pϕ(x/RD)J2

3/2(x)dx . (4.2)

The relation betweenRD and the average distance isRD = 49/68r.
An advantage of the new window function (4.1) is that the assignment of SNe to subsets

is unique. So we do not need to consider different realisations. Like in the previous case, we
determined the optimal global Hubble rateH0 for the model with and that without backreaction
and subsequently calculatedδH for each subset. The result is shown in figure 2b. Note that thedata
points for the two models differ slightly as we have used different values ofH0. The quantitative
analysis shows that the model with backreaction is only about twice as likely as the models without
backreaction effects. Thus, we have not found any evidence for backreaction.

5. Conclusion

Theoretically, backreaction influences the measurements of the Hubble rate by increasing its
variance. This effect should be observed, if it was possibleto measure the Hubble rate at different
locations in the universe. We are, however, restricted to our local universe. So it is possible that
our local measurements are by chance consistent with a modelthat does not include backreaction
effects. If that was the case, we would not be able to detect those effects using the test presented
in this work. Therefore, the test can potentially prove the existence of backreaction effects, but it
cannot prove that there are no such effects.
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Using the currently available supernova data, we could find some slight hint of backreaction,
but no evidence. Larger data could help providing that evidence. A larger number of supernovae
leads to a smaller variance in the model without backreaction. If the measured values ofδH stayed
approximately the same for a sufficiently large data set, then the data would lie significantly outside
the variance limits of a model without backreaction. In thatway future data sets have the potential
of providing the evidence for the backreaction mechanism.
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