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1. Deuterium burning in low-mass stars

Screening corrections to nuclear reaction rates play an important rôle in stellar modeling and
stellar evolution [1]. For hot and dilute plasmas, these corrections have already been studied in
the pioneering work of Salpeter [2] and are well understood.However, for relatively cold and
dense plasmas, more sophisticated theories accounting formany-body effects as well as quantum
statistics are indispensable [3].

The existence of brown dwarfs has been conjectured in the earlier 1960s [4]. Since the first
definitive identification of the genuine brown dwarf Gl 229 B by Nakajima [5], the study of brown
dwarfs has progressed enormously due to observational efforts in infrared spectroscopy. Theo-
retical modeling suggests, that these stars have much cooler and denser core plasma conditions
compared to e.g. our sun [6].

Brown dwarfs and very low mass stars generate their energy via a truncated pp-chain given by
the reactions , cf. Ref. [6],

p+ d → 3He+ γ ,

p+ p → d + e+ + νe ,

p+ e− + p → d + νe .

The first reaction converts primordial deuterium with aQ-value ofQ = 5.494 MeV. Recent val-
ues for the isolated nuclear reaction rates can be found in Refs. [7]. However, these reaction
rates are modified in the stellar environment due to many-body effects such as screening and de-
generacy. The importance of these corrections can be estimated from the non-ideality parameter
Γc = Z2

ce2/(4πε0kBT) (4πnc/3)1/3 and the degeneracy parameterθc = 2mckBT/h̄2 (3π2nc
)−2/3

for a multi-component plasma with particle-densitiesnc and temperatureT, c being the index la-
beling the species. As a specific example, we consider the core conditions given by Burrows et
al. [8], model X. This model assumes solar metallicity, a helium fraction ofYα = 0.25, and a
deuterium fraction ofYd = 2× 10−5. In Fig. 1, we illustrate the parametersΓe andΘe for these
conditions. Note, that for very low-mass stars the parameters Γe andΓp exceed unity andΓα ap-
proaches unity, see also Tab. 1. Also, the degeneracy parameterθe of electrons is smaller than unity
at low masses. Thus, we expect that interaction as well as degeneracy effects must be accounted
for. In the following, we only use the data for an age of 0.003 Gyrs since deuterium burning is
occuring only in the early phase of the brown dwarf evolution.

2. Many-body approach to screening corrections

The standard approach to estimate screening corrections was developed in Ref. [9] and ex-
tended by Mitler [10]. It is based on classical statistics and evaluates the so-called screening poten-
tial, see also Ref. [3]. It accounts for many-body effects, but ignores quantum effects, dynamical
effects, and (partial) degeneracy. Here, we outline a more systematic approach based on quantum
statistics using thermodynamic Green’s functions. As was shown in Ref. [11], the reaction rate
can be obtained from a Green’s function approach, cf. Ref. [12]. In particular, for binary reac-
tions 1+2→ 3+4 and neglecting correlations between the in-coming channel and the out-going
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Figure 1: Density and temperature conditions for the electron gas at core conditions in the model X of
Ref. [8]. Samples for a an age of 0.003 Gyrs and 0.07 Gyrs are shown. Lines for constant degeneracy
parameterθe and non-ideality parameterΓe are also indicated.

channel, we have for the rateR

R1+2→3+4(Q) = ∑
pin,pout

∫ ∞

−∞

dh̄ω
2π

|Vreact(pin, pout)|
2

×nB(h̄ω −µ1−µ2)(1+nB(h̄ω +Q−µ3−µ4)) A12(pin, h̄ω)A34(pout, h̄ω +Q)

According to this formula, the rates splits into a) the nuclear information|Vreact(pin, pout)|
2, i.e.

the cross section at a given energy, b) statistical information via the two-particle Bose distribution
nB(ω) and the chemical potentialsµ1,µ2 it contains, and c) correlations for the propagation of
two-particle states represented by the two-particle spectral functionsA12 andA34. The summation
is performed with respect to the incoming and outgoing momenta pin, pout of the particles involved.
The two-particle spectral functions can be determined by solving an in-medium two-particle equa-
tion being a generalization of the Lippmann-Schwinger equation, e.g. for the incoming channel,

(

Ep(1)+Ed(2) + ∆eff
p,d(12,z) − z

)

Gp,d(121′2′,z)

+∑̄
12̄

Veff
p,d(121̄2̄,z)Gp,d(1̄2̄1′2′,z) = iδ11′δ22′Np,d(12) ,

with 121′2′1̄2̄ being momenta,Ep(1),Ed(2) indicating kinetic energies.∆eff
p,d(12,z) andVeff

p,d(121̄2̄,z)
are effective self energy and effective interaction due to the surrounding particles in the plasma.
The Green’s functionGp,d and the spectral functionAp,d are connected viaAp,d(ω) = Gp,d(ω +

iε)−Gp,d(ω − iε). Single-particle corrections are determined by solving the Dyson equation, see
for details Ref. [12]. Screening as the most important many-body effect is included by defining a
dynamical screened interactionVs(q,ω) = V(q)/ε(q,ω) whereε(q,ω) is the dielectric function.
Here,V(q) is the Coulomb potential in momentum space representation and ω is a frequency. For
ω = 0, Vs(q,ω = 0) reduces to the static screened potential. The dielectric function is treated in
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Random Phase approximation (RPA) taking full account of quantum and degeneracy effects, cf.
Ref. [13, 14]. Note thatVS is a dynamical quantity taking care of the retardation effects due to the
motion of particles.

3. Assessing screening corrections in low-mass stars

The approach outlined above is quite involved and results will be presented in detail in a
forthcoming paper, see also Ref. [11]. Here, we will give some simple estimates for the importance
of many-body effects. These shall serve only as a guide to pindown plasma conditions to be
considered with the more elaborated approach. To this end, we consider Salpeter screening, i.e. we
assume, that the screening correctionf (nc,T) is given by the total screening lengthκ as f (nc,T) =
exp

(

e2κ/4πε0
)

. We define a generalized screening length for the electrons by

k2
s,e =

1
2

k2
TF θ1/2

e F−1/2(µe/kBTe) ,

wherekTF = (3θe/2)1/2 κD,e is the Thomas-Fermi length,F−1/2 the Fermi-Dirac function with
index −1/2 andµe the chemical potential for electrons at densityne and temperatureTe. Note
that this expression reduces to the traditional Debye-screening lengthκD,e =

(

e2ne/ε0kBT
)1/2

for
a non-degenerate plasma, whileks,e coincides withkTF for highly degenerate plasmas. The total
screening lengthκ is obtained as

κ2 = k2
s,e+xpκ2

D,p+xdκ2
D,d ,

whereκD,p andκD,d are the Debye screening length for protons and deuterons, respectively.xp and
xd are correction factors accounting for a partial screening by protons and deuterons due to low
mobility of ions as compared to electrons. Here, we take the numerical value ofxp = xd = 0.865
from Ref. [16] where is has been obtained within the same theoretical approach outlined above.

We present our results in Tab. 1. The estimatef̄ for the screening corrections normalized to
Debye screening is shown as a function of the mass of the star.Accounting for degeneracy leads
to a decrease in the electron screening lengthks,e at low masses as compared to Debye screening
given byκD,e. Already for M/Msun≤ 0.04, deviations are larger than 10%. A reduction of the
screening length corresponds to a more Coulomb-like potential, which is harder to penetrate by the
reacting particles. Thus, the rate is reduced compared to a description ignoring deneraracy effects.
Dynamic screening effects given byxp andxd act in the same vein. However, significant deviations
in f̄ arise only for very small masses. This is due to the fact, thatthe core temperature is still large,
diminishing effects in the screening length.
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