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In a superhigh magnetic field, direct Urca reactions can proceed for an arbitrary proton concen-

tration. The magnetic field is the main energy source of all the persistent and bursting emissions

observed in anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs). Employing

the assumption of micro-state number, we deduce the formulaof electron Fermi energyEF(e) in

superhigh magnetic fields. Based on observing and introducing relevant parameters introduced, a

approximate way of calculating the X-ray luminosity of a MagnetarLX in any superhigh magnetic

field is introduced.
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1. Introduction

AXPs and SGRs are a small group of peculiar neutron stars (NSs) that are currently believed to
have superhigh magnetic fields B∼ 1014−1015 G, and are hence identified as magnetar candidates
[1], [3], [4], [5], [6], [11]. The magnetic fields of magnetars deduced from their long spin periods (P ∼
5 -12 s) and spin-down rates (Ṗ ∼ 10−10−10−13 s s−1) based on magnetic dipole radiation, are so
strong as to reach two orders of magnitude larger than the quantum critical thresholdBcr=4.414
×1014 G. Moreover, a similar estimate of a superhigh magnetic fieldis also derived from the
observation of an absorption line in the X-ray spectrum of SGR 1806-20[2]. Another evidence of a
superhigh magnetic field is that, a strong magnetic field is required to confine a fire ball effectively
when modeling giant flares of SGRs[7]. For most AXPs, the observed values ofLX ∼ 1034−1036

ergs s−1, and the decaying pulsating tails of giant flares may have higher energy∼ 1044 ergs,
which can not be explained by the loss of rotation energy of a neutron star. It is generally believed
that such huge energy released may originate from the magnetic field energy of a magnetar. For
magnetars, the superhigh magnetic fields could be from the induced magnetic moments of3P2

Cooper pairs in an anisotropic neutron superfluid at a lower interior temperature[8], [9]. Now, we
briefly summarize the results of our previous job, which is relevant to our current job ( studying
huge X-ray luminosity of magnetars). The main points are as following:

(1). Calculations show that the fossil magnetic field of a neutron star, formed during core-
collapse, will be magnified 91 times by Pauli paramagnetism due to the presence of a relativistic
degenerate electron gas[8].

(2). The total magnetic field induced by3P2 Cooper pairs isBin = Bmax f (µnB/kT ), Bmax=
2.02×1014η G, wheref (x) is the Brillouin function, f (x) = 2sinh(2x)

1+cosh(2x) , whenx ≪ 1, f (x) ≈ 4x/3;
whenx ≫ 1, f (x) → 1 [9].

(3). The quantityq depicts the probability for two neutrons being combined into a3P2 Cooper
pair,q ∼ 0.087. More specifically,η = m(3P2)

0.1Msun
R−3

NS,6(
∆n(

3P2)
0.05MeV )0.5, hereη is the dimensionless factor

describing both the macroscopic and microscopic properties of neutron stars andRNS,6 is the radius
of a neutron star in units of 106 cm. When the temperature decreases toTc, the value of the induced
magnetic field increases and just reaches that of a magnetar,Tc is the Curie Temperature of a phase
transition from paramagnetism to ferromagnetism.

In this paper, the physics of huge X-ray luminosity of magnetars will be investigated.

2. Fermi sphere of electrons under ultrastrong magnetic field

As far as we know, in a weak magnetic field (B ≪ Bcr), the Fermi surface of electrons is
spherical, and the quantized Landau levels are insignificant, on the other hand, when in an intense
magnetic field (B ≫ Bcr), the behavior of an electron gas is very different from thatof a weak mag-
netic field: the Fermi sphere becomes a Landau column and the energy levels perpendicular to the
direction of the applied magnetic field are quantized. The energy of an electron with orbital quan-
tum numbern (n = 0,1,2,3, · · ·, depicts the number of Landau levels) and spin quantum number σ
(σ = ±1)in a superhigh magnetic field is given by

E2
e (pz,B,n,σ) = m2

ec4 + p2
z c2 +(2n+1+ σ)2mec

2µeB, (2.1)

2



P
o
S
(
N
I
C
 
X
I
)
1
7
6

The physics of Magnetars Qiu-he Peng

wherepz is thez-component of electron momentum, andµe ∼0.927×10−20 ergs G−1 is the mag-
netic moment of an electron. In the light of the Pauli exclusion principle, the electrons are situated
in disparate energy states in order one by one from the lowestenergy state up to the Fermi energy
(the highest energy) with the highest momentumpF(z) along the magnetic field. In order to cal-
culate electron state densityNphase (electron energy state number in a unit volume), we define a
non-dimensional magnetic field:b = B/Bcr and electron momentum perpendicular to the magnetic
field: p⊥ = mec

√

(2n+1+ σ)b. In the absence of a magnetic field, bothd pz andd p⊥ change
continuously and the microscopic state numberNphase in a volume element of phase spaced3xd3p
is d3xd3p/h3. In the presence of a magnetic field, electrons are populatedin many discrete Landau
levels withn = 0, 1, 2, 3,· · ·, if B ≫ Bcr, the Landau column becomes a very long and very narrow
cylinder along the magnetic field, the overwhelming majority of electrons congregates in the lowest
levels withn= 0 orn =1, 2, the section radius of a Landau column isp⊥. For a givenpz , there is a
corresponding maximum Landau level numbernmax, whose expression is

nmax(pz,b,σ = −1) ≈ nmax(pz,b,σ = 1) = nm(pz,b) (2.2)

nmax(pz,b) = Int[
1
2b

[(
EF(e)
mec2 )2−1− (

pz

mec
)2]−1], (2.3)

whereInt[x] denotes an integer value of the argumentx.
In an intense magnetic field,d pz changes continuously along thez-axis direction, whereas

d p⊥ is not continuous and must obey the relationp⊥ = mec
√

(2n+1+ σ)b. An envelope of
the Landau circles with maximum quantum numbernmax(pz,b) (0≤ pz ≤ pF ) will approximately
form a sphere, i.e. Fermi sphere. For any a given electron number density with a highly degenerate
state in the interior of a neutron star, the stronger the magnetic field, the larger the maximum of
pz is, hence the lower the number of states in thex − y plane according to the Pauli exclusion
principle (each microscopic state is occupied by one electron only). In other words,nmax(pz,b)

and the number of electrons in thex− y plane decrease with the increase ofB, the radius of the
Fermi spherepF is expanded which implies that the electron Fermi energyEF(e) also increases.
The higher the Fermi energyEF(e), the more obvious the "expansion" of the Fermi sphere is,
however, the majority of the momentum space in the Fermi sphere is empty for not being occupied
by electrons.

3. The relation between the electron Fermi energy and the magnetic field strength

By using the relation 2µeBcr/mec2 = 1 and summing over electron energy states in a 6-
dimension phase space, we can expressNphase as follows:

Nphase =
2π
h3

∫ pF

0
d pz

nm(pz,σ ,b)

∑
n=0

∑
σ=±1

∫

δ (
p⊥

mec
− [(2n+1+ σ)b]

1
2 )p⊥d p⊥

= 2π(
mec

h
)3

∫

EF (e)

mec2

0
d(

pz

mec
)[

nm(pz,σ=−1,b)

∑
n=0

gn

∫

δ (
p⊥

mec
− (2nb)

1
2 )(

p⊥
mec

)d(
p⊥

mec
)

+
nm(pz,σ=1,b)

∑
n=0

gn

∫

δ (
p⊥

mec
− (2(n+1)b)

1
2 )(

p⊥
mec

)d(
p⊥

mec
)], (3.1)
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whereδ ( p⊥
mec − [(2n + 1+ σ)b]

1
2 ) is the Diracδ -function, which is to express the quantization

of Landau levels in the direction perpendicular to the applied magnetic field,g(n) is the statistical
weight of a energy level with quantum numbern. According to atomic physics and nuclear physics,
the higher the quantum numbern , the larger the probability of a particle’s transition (this transition
is referred to the transition from the higher energy level into lower energy level) is; the longer the
lifetime of a particle is, or the wider the energy width is, then the larger the density of energy levels
is and the more microscopic state number is. As to the statistical weightg(n), we may take such an
assumption:

g(n) = g0nα , (3.2)

whereg0 andα (α ≥ 0) are the statistical weight coefficient and the statistical weight index, re-
spectively, in a given model. We then have

Nphase =
2(1−α)

2α +3
π

b(α+1)
g0I(α)(

mec
h

)3(
EF

mec2 )(2α+4), (3.3)

where I(α) =
∫ 1

0 (1− t2)(α+ 3
2). In the presence of a superhigh magnetic field, the energy state

density of electronsρe can be expressed as:

ρe ≈
22(1−α)

2α +3
π

b(α+1)
g0(

mec
h

)3 1
mec2 [(

EF(e)
mec2 )2− (

E(e)
mec2 )2]α+ 3

2 . (3.4)

According to the Pauli exclusion principle, electron statedensityNphase should be equal to electron
number densityne, ne = NAρYe, whereNA is the Avogadro constantNA= 6.02×1023, Ye is the mean
electron number per baryon andρ is the matter density of a neutron star. Then we obtain the Fermi
energy of electrons in ultrastrong magnetic fields

EF(e)
mec2 = C[

Ye

0.05
ρ
ρ0

]
1

2(α+2) b
α+1

b(α+2) , (3.5)

whereC is a constant relevant to a given model, the value ofC is determined by

C = (6.7×1035)
1

2(α+2) (2.44×10−10)
3

2(α+2) [
2α (2α +3)

g0I(α)
]

1
2(α+2) . (3.6)

Comparing eq.(3.5) with the known Fermi energy of electronsin a weak magnetic fieldEF(e)=
60( ρ

ρ0
)

2
3 MeV [10] gives the value ofg0. For simplicity, we discuss three simple models:α= 0 ,α=

0.5 andα= 1.0:
(1) For the modelα = 0 we have

EF(e) = 60[
Ye

0.05
ρ
ρ0

]
1
4 b

1
4 MeV (b > 1) (3.7)

(2) For the modelα = 0.5 we have

EF(e) = 60[
Ye

0.05
ρ
ρ0

]
1
5 b0.3MeV (b > 1) (3.8)

(3) For the modelα = 1 we have

EF(e) = 60[
Ye

0.05
ρ
ρ0

]
1
6 b

1
3 MeV (b > 1) (3.9)
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B b EF(e,α = 0) EF(e,α = 0.5) EF(e,α = 1)

(G) (B/Bcr) (MeV) (MeV) (MeV)
2.0×1014 4.531 87.54 94.41 99.28
4.0×1014 9.062 104.10 116.23 125.09
6.0×1014 13.593 115.21 131.26 143.19
8.0×1014 18.124 123.80 143.10 157.60
1.0×1015 22.655 130.90 153.00 169.77
2.0×1015 45.310 155.67 188.37 213.90

Table 1: The values ofEF(e) in three simple models whenρ=ρ0=2.8×1014 g cm−1 andYe=0.05.

The calculation results ofEF(e) are shown partly in Table 1.
From Table 1, we may see the effects of superhigh magnetic fields on the Fermi energy of

electrons. As soon as the energy of electrons near the Fermi surface are higher than the Fermi
energy of neutrons (EF(n)≈ 60 MeV [10], the processe−+ p→ n+νe will dominate. The resulting
neutrons with high energy will react with the neutrons produced in the processn +(n ↑ n ↓) −→
n+ n+ n. Then the3P2 anisotropic superfluid and the superhigh magnetic field induced by the3P2

Cooper pairs will disappear. When one3P2 Cooper pair is destroyed, magnetic field energy∼ 2µnB
would be released and transformed into thermal energy, where µn = 0.966×10−23 erg G−1 is the
abnormal magnetic moment of a neutron. This thermal energy released then would be transformed
into radiation energy as soft X-rays andγ-rays,kT ≃ µnB ≃ 10B15 KeV. Before calculatingLx of
magnetars, we can make a simple evaluation as following: if all 3P2 Cooper pairs are destroyed,
the total magnetic field energy released is

E =
1
2

qNAm(3P2)×2µnB ≃ 1×1047B15
m(3P2)

0.1Msun
ergs. (3.10)

If the total magnetic field energy released can be transformed into radiation energy, and if the
persistent X-ray fluxes observed in AXPs are powered by magnetic field energy of magnetars,
magnetars may maintain over 104−106 yrs for a luminosity of X-ray∼ 1034−1036 ergs s−1. The
electron capture rate,Γ, is defined as the number of electrons captured by one proton per second,
and can be computed using standard charged-currentβ -decay theory. The expression fordΓ reads:

dΓ =
2π
h̄

G2
FC2

V (1+3a2)(1− fν)ρνdEνδ (Eν + Q−Ee), (3.11)

whereEν = Ee −Q, T = 108 K, ρν = (Ee−Q)2

2π2h̄3c3 and other terms appearing in eq.(3.11) have already
been defined in Chapter 18 of[10]. The total magnetic field energy released is calculated by

LX = ζV (3P2)
(2π)4

h̄V1
G2

FC2
V (1+3a2)

∫

dnednpdnndnν

δ (Eν + Q−Ee)×δ 3(
−→
K f −

−→
Ki)S∆E(3P2), (3.12)

whereS = fe fp(1− fn)(1− fν) ≈ 1, V (3P2) denotes the volume of3P2 anisotropic neutron super-
fluid (V (3P2) = 4

3πR3
5,R5 = 105 cm),ζ is the probability of the reactionn+(n ↑ n ↓) −→ n+n+n.

The value ofζ , though known asζ ≪1, should be calculated by condensed physics, however,ζ
can be estimated roughly by comparing the calculations withthe observations. From eq.(3.12), the
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value ofLx can be gained∼ 1034−1036 ergs s−1 for magnetars while the mean value ofζ ∼ 10−17

from the observations.
After a complicated process, we gain a general formula ofLX suitable to any model. The

expression ofLX reads:

LX = ζ
4
3

πR3
5×

2π
h̄

1

2π2h̄3c3
×G2

FC2
V (1+3a2)× 8π

√
2m

3
2
n

h3 × 22(1−α)

2α +3

× π
bα+1 ×g0× (

mec
h

)3× 1
mec2 ×

1

(mec2)2(α+ 3
2)
×2µnB× (1.60×10−6)2α+7.5

∫ EF(e)

60
(En)

1
2 dEn

∫ EF (e)

En+0.61
(Ee +0.61−En)

2((EF(e))2 +(Ee)
2)

3
2+αdEe, (3.13)

where the relation 1MeV= 1.6×10−6 ergs is used. Inserting the values of following constants:GF=
1.4358×10−49 erg cm3, CV =0.9737,a=1.253,h̄=1.055×10−27 erg s−1, h= 6.63×10−27erg s−1,
me= 9.109×10−28 g, mn= 1.67×10−24 g, c= 3×1010 cm s−1, µn=0.966×10−23 erg G−1, R5=
105 cm, into eq.(3.12) and using the data in Table 1 gives the value of LX in any different strong
magnetic field.
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