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densities. A new parametrization of density dependent couplings is suggested based on these
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1. Introduction

In neutron star physics one has to determine a reliable equation of state (EoS) of nuclear
matter in a wide range of densities [1]. In astrophysical simulations of supernovae a wide range
in temperatures and neutron-proton asymmetries has to be covered as well. Different models are
used to provide a reasonable behavior for the EoS, valid in various density and temperature regions,
however these models can hardly be united. Relativistic Mean Field (RMF) models, based on the
Walecka model [2], describe nuclear matter below, above andaround nuclear saturation density
ρsat≃ 0.16fm−3 [3, 4, 5, 6] using a quasiparticle approach.

But such models do not describe nuclear matter properties atdensitiesρ ≪ ρsat as well as
models based on realistic nucleon-nucleon potentials constrained by scattering data in vacuum.
At low densities and not too low temperatures one can consider a virial EoS [7], which gives
a model-independent description of nuclear matter that takes two-body correlations into account
using experimental information of nucleon-nucleon scattering phase shifts.

Here we consider a RMF model with density dependent couplings [5] where the coupling
functions were determined from fits to properties of finite nuclei. The model was recently extended
to include the formation of clusters at low densities [8]. The aim of this work is to modify the
density dependence of the couplings at very low densities inorder to match the virial EoS and, if
possible, to give a reasonable description of nucleon-nucleon scattering phase shifts.

This paper is organized as follows. In Section 2 we present the parametrisation of the meson-
nucleon couplings in the RMF model [5]. Constraints from thevirial expansion are discussed in
Section 3. Concluding remarks and an outlook are given in Section 4.

2. RMF model with couplings depending on the density

We start with a RMF model with density dependent coupling constantsΓl of four mesons
l = σ ,ω ,ρ ,δ with massesml that are commonly considered in this approach to model the nucleon-
nucleon (NN) interaction [5]. The coupling functions are taken in the form:

Γl(ρ) = Γl (ρsat) fl (x), x =
ρ

ρsat
(2.1)

with the nuclear matter densityρ and the functionsfl (x) considered in [5]. In [5]Γδ was put to
zero. As we argue in Sect. 4, we needΓδ 6= 0 to match the RMF EoS with the virial limit at low
densities. Previously, parameters of the model were fitted to properties of finite nuclei, now we
would like to modify the coupling functions at densitiesρ ≪ ρsat to fulfill the virial limit and NN
scattering data.

3. Constraining the coupling constants from the virial expansion

The virial equation of state presents a model independent approach in the calculation of ther-
modynamical properties of low density matter, provided thefugacitieszi = exp( µi

T ) of the particles
i with nonrelativistic chemical potentialµi are small. The range of densities where the virial ex-
pansion is valid can be estimated by the relationρiλ 3

i ≪ 1 whereλi = (2π/miT)1/2 is the thermal
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wave length at temperatureT andmi is the particle mass. The pressureP of the matter is given
by the logarithm of the grand canonical partition function,which is expanded in a power series of
fugacities:

P = T
logΩ

V
= T



∑
i

gi
zi

λ 3
i

+∑
i j

bi j
zizj

λ
3
2

i λ
3
2
j



 . (3.1)

Particle degeneracy factors are denoted bygi andbi j are the second virial coefficients given by

bi j =
1+ δi j

2
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i j
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]
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2 (3.2)

with λi j = (2π/(mi +mj)T)1/2. The quantitiesgi j
k andgi j

l denote the degeneracy factor for bound
statesk with energyEi j

k < 0 and scattering states in channell with phase shiftsδ i j
l (E), respec-

tively. The term±δi j gi 2−
5
2 accounts for the correction for Bose-Einstein or Fermi-Dirac statistics.

Neutron and proton densities then have the form:

nn =



gn
zn

λ 3
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The energy dependence of the phase shift can be expressed in terms of scattering lengthai j
l using the

effective range expansion. ForS-waves one haskcot(δ i j
l ) = − 1

ai j
l

, k =
√

2mi j E andmi j =
mimj

mi+mj
.

The virial coefficients can be calculated analytically. With anp
t > 0, anp

s < 0 andann
s < 0 one obtains

in the limit T → 0 the approximations

bnn ≈ λ 3
n

2
√

π λ 3
nn

√

2mnnT[ann
s ]2−2−

3
2 (3.4)
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(
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)]

, (3.5)

whereBd is the deuteron binding energy. Now let us consider generalized RMF description [8]
with neutrons, protons and deuterons as degrees of freedom.The density of neutrons and protons
is:

ni = gi

∫

d3k
(2π)3

{

exp

[

1
T

(

Vi +
√

k2+(m∗
i )

2− µ̃i

)]

+1

}−1

, (3.6)

where µ̃i is the relativistic chemical potential,m∗
i = mi −Si is the effective mass andVi , Si are

vector and scalar potentials. The density of the deuterons is given by a similar expression with the
Bose-Einstein distribution function. We perform an expansion in powers of the neutron and proton
fugacities keeping only contributions linear or quadraticin zi . Finally, a comparison of the RMF
results with the virial expression of the densities forT → 0 leads to the relations:

Γ2
δ

m2
δ
−

Γ2
ρ

m2
ρ

= −π
[

ann
s

mn
− mn+mp

mnmp

anp
s +3anp
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]

, (3.7)
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σ

m2
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ω
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, (3.8)
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Γσ (0) Γω(0) Γρ(0) Γδ (0) mσ mω mρ mδ

11.32017 15.96944 10.45724 13.47244 550 MeV 783 MeV 763 MeV 983 MeV

Table 1: Coupling constants at zero density and masses of the mesons.

where the coupling constants have to be taken at zero density. In model [5] the coupling constants
at very small densities are not well constrained and simply follow from the extrapolation with the
assumed functionsΓl (ρ). Now we use relations (3.7) and (3.8) to constrain the couplings at low
densities. Simultaneously, we try to fitΓl (0) to describe NN scattering phase shift at low densities
including the pion in the boson exchange potential that gives no contribution in the mean-field
approximation for nuclear matter. However, it was rather difficult to find a good parametrization for
the couplings in the low-density EoS and the NN scattering simultaneously. Therefore we suggest
to incorporate not only the deuteron bound state but also thetwo-body scattering correlations in the
generalized RMF model. Continuum contributions can be represented effectively by resonances
and treated like additional clusters with temperature depending energies. In this case the relations
for the zero-density couplings assume the form:

Γ2
δ

m2
δ
−

Γ2
ρ

m2
ρ

= 0
Γ2

σ
m2

σ
− Γ2

ω
m2

ω
= 0 (3.9)

Respecting these relations, we are able to obtain the zero density coupling constants with a descrip-
ton of low-energy NN scattering. Results for the couplingsΓl (0) are given in Table 1. In order to
achieve a smooth transition from the previous density dependent couplings at high densities to the
newly derived values of the couplings at zero density we suggest to use a modified version of the
coupling functions by introducing

Γnew
l (ρ) =

[

1+
Γl (0)new−Γl(0)old

Γl (0)old exp
(

−αx2)
]

Γold
l (ρ) . (3.10)

This modification contains a parameterα ≫ 1 which governs the location of the transition point.
Γl (0)new are the new coupling constants from Table 1 andΓl (0)old are the constants from the old
parametrization. For theδ meson we assume the simple functionΓnew

l (ρ) = Γnew
l (0)exp

(

−αx2
)

.
The form of the functions and the parameterα are chosen in such a way to reproduce the virial
limit at low densities and to match with the old functions (fitted to the properties of finite nuclei)
at high densities, where the virial expansion is no longer valid. In Fig.3 the modification of the
coupling functions at low densities, as required by the new constraints, is depicted for a value
of α = 1600. We observe a smooth transition at very low densities around the transition density
ρsat/

√
α ≈ 0.004 fm−3.

A more general microscopic description of cluster formation and dissolution in dense matter was
presented in [9]. This approach leads to generalized Beth-Uhlenbeck formula with contributions
from bound and scattering states, however calculated from the in-medium T-matrix. We restricted
ourselves to a more phenomenological approach that reproduces the standard virial EoS at low
densities.
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Figure 1: Density dependence of the meson-nucleon couplings in the original RMF model (dashed lines)
and in the proposed form with a low-density modification (solid lines).

4. Summary and outlook

In this paper we have studied new constraints for the low density meson-nucleon couplings in
a generalized RMF model that were derived by requiring a consistency of the RMF EoS with the
virial equation of state at small densities, low temperatures and low-energy nucleon-nucleon
scattering data. New parametrization functions for the coupling coefficients were proposed, taking
into account these constraints. In the future we plan to implement these results in the calculation
of the EoS in the generalized RMF model with bound state and scattering correlations and to
study the effects on the thermodynamical properties of low-density matter. Finally the derived
EoS will be applied in astrophysical model calculations, inparticular in the study of neutron star
properties and later in supernova simulations.
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