

Half-Lives for r-Process Nucleosynthesis Predicted by the ANN Statistical Global Model

N. J. Costiris* and E. Mavrommatis

Department of Physics, Section of Nuclear & Particle Physics, University of Athens, 15771

Athens, Greece

E-mail: ncost@phys.uoa.gr, emavrom@phys.uoa.gr

URL: http://www.pythaim.phys.uoa.gr

K. A. Gernoth

School of Physics & Astronomy, Schuster Building, The University of Manchester, Manchester, M13 9PL, United Kingdom

E-mail: klaus.a.gernoth@manchester.ac.uk

J. W. Clark

McDonnell Center for the Space Sciences and Department of Physics, Washington University, St. Louis, Missouri 63130, USA

E-mail: jwc@wuphys.wustl.edu

Full understanding of nucleosynthesis via the r-process continues to be a major challenge for nuclear astrophysics. Apart from issues within astrophysical modeling, there remain significant uncertainties in the nuclear physics input, notably involving the β -decay halflives of neutron-rich nuclei. Both the element distribution on the r-process path and the time scale of the r-process are highly sensitive to β^- lifetimes. Since the majority of nuclides that lie on the r-process path will not be experimentally accessible in the foreseeable future, it is important to provide accurate predictions from reliable models. Toward this end, a statistical global model of the β decay halflife systematics has been developed to estimate the lifetimes of nuclides relevant to the r-process, in the form of a fully-connected, multilayer feedforward Artificial Neural Network (ANN) trained to predict the halflives of ground states that decay 100% by the β^- mode. In predictive performance, the model can match or even surpass that of conventional models of β decay systematics. Results are presented for nuclides situated on the r-ladders N = 50, 82 and 126 where abundances peak, as well as for others that affect abundances between peaks. Also reported are results for halflives of interesting neutron-rich nuclides on or towards the r-process path that have been recently measured. Comparison with results from experiment and conventional models is favorable.

11th Symposium on Nuclei in the Cosmos, NIC XI July 19-23, 2010 Heidelberg, Germany

^{*}Speaker.

1. Introduction

Nucleosynthesis through the r-process produces more than half of the heavy elements beyond iron. Command of the quantitative details of this process is one of the most exciting and challenging goals of modern nuclear astrophysics [1]. Its astrophysical site as well as the necessary nuclear physics input are yet to be unambiguously identified. A knowledge of β^- -decay halflives T_{β^-} of heavy neutron-rich nuclides are of primary importance for a full understanding of the r-process, since they play a crucial role in determination of the time scale for matter flow and of the abundances of heavier nuclei. In the classical waiting-point approximation, T_{β^-} values are particularly important for the r-ladder isotones N=50, 82, and 126 where abundances peak. In the latter dynamical r-process models T_{β^-} of all nuclides are involved.

In recent years, significant progress has been made experimentally toward determination of $\beta^$ halflives of r-process nuclides, and there are ambitious plans for further measurements at existing and new-generation facilities such as FAIR/GSI, FRIB/NSCL, and RIBF/RIKEN. Still, the majority of the neutron-rich nuclides involved will remain inaccessible in the near future. Thus, continued progress rests on reliable predictions from models of nuclear systematics, based on fundamental theory or otherwise. A number of useful approaches to modeling β^- lifetimes have been proposed and applied to different regions of the nuclear chart. These include the shell-model calculation of Ref. [2] and models based on the proton-neutron Quasiparticle Random-Phase Approximation (pnQRPA). Important among the latter are the hybrid model by Möller et al., which combines the pnQRPA model with the statistical Gross Theory of ff decay (pnQRPA+ffGT) [3], the model by Borzov et al. in which the continuum QRPA is based on a self-consistent density-functional description of the ground-state properties (DF3+CQRPA) [4], and the relativistic pnQRPA model of Ref. [5] (pnRQRPA+ff). Although there is continuing improvement, the predictive power of these "theory-thick" models is rather limited far from stability. This being the case, "theory-thin," data-driven statistical modeling based on artificial neural networks (ANNs) and other adaptive techniques of statistical inference presents a potentially effective alternative for global modeling of β^- -decay lifetimes, as it does for other nuclear properties. Here we apply our recently developed ANN statistical global model of T_{β^-} systematics to nuclides relevant to the r-process [6]. The essentials of this model are sketched in Sec. 2. Results are presented and discussed in Sect. 3, with concluding remarks in Sec. 4.

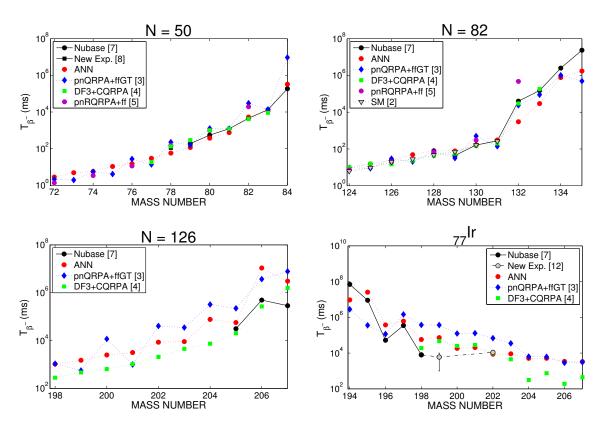
2. The Model

The fully-connected feedforward Artificial Neural Network (ANN) of Ref. [6] with architecture symbolized by [3-5-5-5-1|116] has been employed to generate T_{β^-} values for r-process nuclides. Based on existing lifetime data, this network has been taught with the Levenberg-Marquardt backpropagation optimization algorithm, supplemented by a combination of two well-established techniques, namely Bayesian regularization and cross-validation to avoid overfitting effects. The activation functions of the processing units (model neurons) of the network are taken to be of hyperbolic-tangent sigmoid form in the four intermediate (hidden) layers, a saturated linear function being chosen for the single neuron of the output layer. Inputs to the network consist of the proton and neutron numbers Z and N of the parent nucleus, together with an extra parity input cod-

ing the δ -parameter, defined as the mean of the parities of Z and N. Implementation of this parity unit helps to soften the discrepancies in performance induced by pairing gaps. The experimental data used in our β^- -decay modeling have been taken from the Nubase2003 evaluation of nuclear and decay properties [7]. We restrict attention to the ground states of parent nuclei that decay 100% by the β^- mode. Additionally, we apply a cut-off at 10^6 s. Without detriment to the prediction of β^- halflives, this creates a more homogeneous collection of nuclides, which facilitates training of the network. We arrive at a data set called NuSet-B consisting of 838 nuclides, which is divided randomly into three subsets, with 503 nuclides (60%) used for training the network (learning set) and 167 (20%) used to assess the training procedure (validation set), the residual 168 (20%) being reserved to evaluate the accuracy of prediction (test set). In direct comparison with the experimental data, the ANN performance measured by the root-mean-square error σ_{rms} attains the values 0.53 (learning), 0.60 (validation) and 0.65 (test).

3. Results and Discussion

We now present some results for β^- -decay halflives of nuclides relevant to the r-process, obtained by implementation of the ANN model described in the preceding section. As mentioned in the introduction, knowledge of T_{β^-} values for nuclides with N=50, 82 and 126 plays a key role in understanding the process. Fig. 1 displays results for these isotones in interesting Z regions, together with the available experimental results [7, 8] and T_{β^-} values given by the pnQRPA+ffGT [3], DF3+CQRPA [4], and shell-model calculations [2]. In most cases our values are smaller than those provided by the pnQRPA+ffGT model, which would imply a corresponding speedup of the r-process. Information on β^- decay of other neutron-rich nuclides is also important for studies of r-process nucleosynthesis. Accordingly, Fig. 1 presents halflife results from our model for known and unknown nuclides of the isotopic chain of Ir, in comparison with the available experimental values [7, 12] and results from the pnQRPA+ffGT [3] and DF3+CQRPA [4] calculations. The predictive performance of the ANN model can be further assessed in terms of recently measured β^- -decay lifetimes of neutron-rich nuclides [8-12]. The corresponding halflife results are included in Table 1, along with those given by the pnQRPA+ffGT [3] and DF3+CQRPA [4] models. For these nuclides, the σ_{rms} for the ANN and pnQRPA+ffGT models are 0.45 and 0.77, respectively.


4. Conclusion and Prospects

Our data-driven, theory-thin, statistical global model of β^- -decay halflives, and its successors, can provide a robust tool that complements the conventional r-process clock and matter-flow studies. We plan further statistical modeling of nuclear properties relevant to the r-process, including masses and neutron-capture cross sections, based on existing artificial neural network (ANN) techniques and support vector machine (SVM) approaches [13]. Refinement of current treatments will be sought through committee-machine strategies, in which different ANNs are built to process input patterns and vote on the proper output.

The authors thank I. N. Borzov and T. Marketin for supplying us with theoretical data and for helpful discussions. This research has been supported in part by the University of Athens under Grant No. 70/4/3309.

Nucleus Exp. Data ANN Model $pnQRPA+ffGT$ DF3+CQRPA ^{78}Ni $^{110^{+100}}_{-60}$ 57 224 108 ^{18}Ni $^{110^{+100}}_{-60}$ 57 224 108 ^{105}Y $^{160}\pm 15^{+85}_{-30}$ 58 46 - ^{107}Zr $^{150}\pm 5^{+40}_{-30}$ 75 177 - ^{111}Mo $^{200}\pm 10^{+30}_{-35}$ 145 808 146 ^{117}Mc $^{200}\pm 10^{+30}_{-35}$ 145 808 146 ^{117}Mc $^{200}\pm 10^{+30}_{-35}$ 145 808 146 ^{117}Mc $^{200}\pm 10^{+30}_{-30}$ 145 808 146 ^{117}Mc $^{200}\pm 10^{+30}_{-30}$ 145 808 146 ^{117}Mc $^{200}\pm 10^{+30}_{-30}$ 145 193 145 ^{118}Ru $^{124}\pm 18$ 129 163 127 ^{118}Ru $^{124}\pm 18$ 129 163 </th <th></th> <th colspan="4">$T_{eta^-}(ms)$</th>		$T_{eta^-}(ms)$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nucleus	Exp. Data	ANN Model	pnQRPA+ffGT	DF3+CQRPA	
b. N ≈ 66 - J. Pereira et al. (NSCL, MSU) 2009 [9] 105 Y 160 ± 15 $_{-60}^{+85}$ 58 46 - 106 Zr 260 ± 20 $_{-35}^{+35}$ 106 322 - 107 Zr 150 ± 5 $_{-30}^{+40}$ 75 177 - 111 Mo 200 ± 10 $_{-35}^{+40}$ 145 808 146 c. N ≈ 82 - F. Montes et al. (NSCL, MSU) 2006 [10] 115 Tc 73 $_{-32}^{+32}$ 84 71 134 116 Ru 204 $_{-29}^{+32}$ 188 540 193 117 Ru 142 $_{-17}^{+18}$ 129 163 127 118 Ru 123 $_{-48}^{+48}$ 69 212 95 119 Rh 171 ± 18 209 108 146 120 Rh 136 $_{-13}^{+14}$ 196 83 - 121 Rh 151 $_{-58}^{+67}$ 91 62 87 121 Pd 285 ± 24 334 1275 262 122 Pd 175 ± 16 227 951 184 123 Pd 174 $_{-34}^{+38}$ 149 397 143 124 Pd 38 $_{-19}^{+38}$ 124 289 105 d. N ≈ 82 - KL. Kratz et al. (ISOLDE, CERN) 2005 [11] 133 Cd 57 ± 10 57 185 47 138 Sn 150 ± 60 113 336 240 e. N ≈ 126 - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12] 194 Re 1 $_{-0.5}^{+0.5}$ (s) 20.8 (s) 70.8 (s) 2.1 (s) 195 Re 6 $_{-1}^{+1}$ (s) 23.9 (s) 3.3 (s) 8.5 (s) 196 Re 3 $_{-2}^{+1}$ (s) 8.8 (s) 3.6 (s) 1.4 (s) 199 Os 5 $_{-24}^{+4}$ (s) 13.6 (s) 106.8 (s) 6.6 (s) 200 Os 6 $_{-3}^{+4}$ (s) 73 (s) 370.6 (s) 46.7 (s) 202 Ir 11 $_{-31}^{+31}$ 3, 8.6 (s) 68.4 (s) 9.8 (s)	a. $N = 50$ - P. T. Hosmer et al. (NSCL, MSU) 2005 [8]					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁷⁸ Ni	110^{+100}_{-60}	57	224	108	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	b. $N \simeq 66$ - J. Pereira et al. (NSCL, MSU) 2009 [9]					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	$160 \pm 15^{+85}_{-60}$	58	46	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			106	322	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107 Zr	$150 \pm 5_{-30}^{+40}$	75	177	-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹¹ Mo		145	808	146	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c. $N \simeq 82$ - F. Montes et al. (NSCL, MSU) 2006 [10]					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹¹⁵ Tc	73^{+32}_{-22}	84	71	134	
$ \begin{array}{c} ^{117} \text{Ru} & 142^{+18}_{-17} & 129 & 163 & 127 \\ ^{118} \text{Ru} & 123^{+48}_{-35} & 69 & 212 & 95 \\ ^{119} \text{Rh} & 171 \pm 18 & 209 & 108 & 146 \\ ^{120} \text{Rh} & 136^{+14}_{-13} & 196 & 83 & - \\ ^{121} \text{Rh} & 151^{+67}_{-58} & 91 & 62 & 87 \\ ^{121} \text{Pd} & 285 \pm 24 & 334 & 1275 & 262 \\ ^{122} \text{Pd} & 175 \pm 16 & 227 & 951 & 184 \\ ^{123} \text{Pd} & 174^{+38}_{-34} & 149 & 397 & 143 \\ ^{124} \text{Pd} & 38^{+38}_{-19} & 124 & 289 & 105 \\ \hline & d. & N \simeq 82 \text{ - KL. Kratz et al. (ISOLDE, CERN) 2005 [11]} \\ \hline ^{133} \text{Cd} & 57 \pm 10 & 57 & 185 & 47 \\ ^{138} \text{Sn} & 150 \pm 60 & 113 & 336 & 240 \\ \hline & e. & N \simeq 126 \text{ - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12]} \\ \hline ^{194} \text{Re} & 1^{+0.5}_{-0.5} \text{(s)} & 20.8 \text{(s)} & 70.8 \text{(s)} & 2.1 \text{(s)} \\ ^{195} \text{Re} & 6^{+1}_{-1} \text{(s)} & 23.9 \text{(s)} & 3.3 \text{(s)} & 8.5 \text{(s)} \\ ^{196} \text{Re} & 3^{+2}_{-2} \text{(s)} & 8.8 \text{(s)} & 3.6 \text{(s)} & 1.4 \text{(s)} \\ ^{199} \text{Os} & 5^{+4}_{-3} \text{(s)} & 13.6 \text{(s)} & 106.8 \text{(s)} & 6.6 \text{(s)} \\ ^{200} \text{Os} & 6^{+4}_{-3} \text{(s)} & 73 \text{(s)} & 370.6 \text{(s)} & 46.7 \text{(s)} \\ ^{202} \text{Ir} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{Log_{10}T_{B^-}} & 2.17 \text{ (s)} & 6.8 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{+3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ ^{109} \text{Col} & 11^{-3}_{-3} \text{(s)} & 8.6 \text{(s)} & 68.4 \text{(s)} & 9.8 \text{(s)} \\ \end{array}$	¹¹⁶ Ru	204_{-29}^{+32}	188	540	193	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹¹⁷ Ru	142_{-17}^{+18}	129	163	127	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹¹⁸ Ru	123_{-35}^{+48}	69	212	95	
$ \begin{array}{c} ^{121} \mathrm{Rh} & 151^{+67}_{-58} & 91 & 62 & 87 \\ ^{121} \mathrm{Pd} & 285 \pm 24 & 334 & 1275 & 262 \\ ^{122} \mathrm{Pd} & 175 \pm 16 & 227 & 951 & 184 \\ ^{123} \mathrm{Pd} & 174^{+38}_{-34} & 149 & 397 & 143 \\ ^{124} \mathrm{Pd} & 38^{+38}_{-19} & 124 & 289 & 105 \\ \hline & d. \ N \simeq 82 \text{- KL. Kratz et al. (ISOLDE, CERN) } 2005 \ [11] \\ \hline ^{133} \mathrm{Cd} & 57 \pm 10 & 57 & 185 & 47 \\ \hline ^{138} \mathrm{Sn} & 150 \pm 60 & 113 & 336 & 240 \\ \hline & e. \ N \simeq 126 \text{- T. Kurtukian-Nieto et al. (FRS, GSI) } 2009 \ [12] \\ \hline ^{194} \mathrm{Re} & 1^{+0.5}_{-0.5} (\mathrm{s}) & 20.8 (\mathrm{s}) & 70.8 (\mathrm{s}) & 2.1 (\mathrm{s}) \\ \hline ^{195} \mathrm{Re} & 6^{+1}_{-1} (\mathrm{s}) & 23.9 (\mathrm{s}) & 3.3 (\mathrm{s}) & 8.5 (\mathrm{s}) \\ \hline ^{196} \mathrm{Re} & 3^{+1}_{-2} (\mathrm{s}) & 8.8 (\mathrm{s}) & 3.6 (\mathrm{s}) & 1.4 (\mathrm{s}) \\ \hline ^{199} \mathrm{Os} & 5^{+4}_{-4} (\mathrm{s}) & 13.6 (\mathrm{s}) & 106.8 (\mathrm{s}) & 6.6 (\mathrm{s}) \\ \hline ^{200} \mathrm{Os} & 6^{+4}_{-4} (\mathrm{s}) & 21.7 (\mathrm{s}) & 187.1 (\mathrm{s}) & 6.9 (\mathrm{s}) \\ \hline ^{199} \mathrm{Ir} & 6^{+5}_{-4} (\mathrm{s}) & 73 (\mathrm{s}) & 370.6 (\mathrm{s}) & 46.7 (\mathrm{s}) \\ \hline ^{202} \mathrm{Ir} & 11^{+3}_{-3} (\mathrm{s}) & 8.6 (\mathrm{s}) & 68.4 (\mathrm{s}) & 9.8 (\mathrm{s}) \\ \hline ^{Log_{10}T_{B^-}} & 2.15 & 2.75 \\ \hline \end{array}$			209	108	146	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹²⁰ Rh	136^{+14}_{-13}	196	83	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹²¹ Rh		91	62	87	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹²¹ Pd		334	1275	262	
124Pd 38_{-19}^{+38} 124 289 105 d. $N \simeq 82$ - KL. Kratz et al. (ISOLDE, CERN) 2005 [11] 133Cd 57 ± 10 57 185 47 138Sn 150 ± 60 113 336 240 e. $N \simeq 126$ - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12] 194Re $1_{-0.5}^{+0.5}$ (s) 20.8 (s) 70.8 (s) 2.1 (s) 195Re 6_{-1}^{+1} (s) 23.9 (s) 3.3 (s) 8.5 (s) 196Re 3_{-2}^{+1} (s) 8.8 (s) 3.6 (s) 1.4 (s) 199Os 5_{-2}^{+4} (s) 13.6(s) 106.8 (s) 6.6 (s) 200Os 6_{-3}^{+4} (s) 21.7 (s) 187.1 (s) 6.9 (s) 199Ir 6_{-4}^{+5} (s) 73 (s) 370.6 (s) 46.7 (s) 202Ir 11_{-3}^{+3} (s) 8.6 (s) 68.4 (s) 9.8 (s)	¹²² Pd	175 ± 16	227	951	184	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	¹²³ Pd	174^{+38}_{-34}	149	397	143	
d. $N \simeq 82$ - KL. Kratz et al. (ISOLDE, CERN) 2005 [11] $^{133}\text{Cd} 57 \pm 10 57 185 47$ $^{138}\text{Sn} 150 \pm 60 113 336 240$ e. $N \simeq 126$ - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12] $^{194}\text{Re} 1^{+0.5}_{-0.5}(\text{s}) 20.8 \text{ (s)} 70.8 \text{ (s)} 2.1 \text{ (s)}$ $^{195}\text{Re} 6^{+1}_{-1}(\text{s}) 23.9 \text{ (s)} 3.3 \text{ (s)} 8.5 \text{ (s)}$ $^{196}\text{Re} 3^{+1}_{-2}(\text{s)} 8.8 \text{ (s)} 3.6 \text{ (s)} 1.4 \text{ (s)}$ $^{199}\text{Os} 5^{+4}_{-2}(\text{s)} 13.6 \text{ (s)} 106.8 \text{ (s)} 6.6 \text{ (s)}$ $^{200}\text{Os} 6^{+4}_{-3}(\text{s)} 21.7 \text{ (s)} 187.1 \text{ (s)} 6.9 \text{ (s)}$ $^{199}\text{Ir} 6^{+5}_{-4}(\text{s)} 73 \text{ (s)} 370.6 \text{ (s)} 46.7 \text{ (s)}$ $^{202}\text{Ir} 11^{+3}_{-3}(\text{s)} 8.6 \text{ (s)} 68.4 \text{ (s)} 9.8 \text{ (s)}$	¹²⁴ Pd		124	289	105	
138 Sn 150 ± 60 113 336 240 e. $N \simeq 126$ - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12] 194 Re $1^{+0.5}_{-0.5}$ (s) 20.8 (s) 70.8 (s) 2.1 (s) 195 Re 6^{+1}_{-1} (s) 23.9 (s) 3.3 (s) 8.5 (s) 196 Re 3^{+1}_{-2} (s) 8.8 (s) 3.6 (s) 1.4 (s) 199 Os 5^{+4}_{-2} (s) 13.6(s) 106.8 (s) 6.6 (s) 200 Os 6^{+3}_{-3} (s) 21.7 (s) 187.1 (s) 6.9 (s) 199 Ir 6^{+5}_{-3} (s) 73 (s) 370.6 (s) 46.7 (s) 202 Ir 11^{+3}_{-3} (s) 8.6 (s) 68.4 (s) 9.8 (s)						
e. $N \simeq 126$ - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12] 194 Re $^{1+0.5}_{-0.5}$ (s) 20.8 (s) 70.8 (s) 2.1 (s) 195 Re $^{6+1}_{-1}$ (s) 23.9 (s) 3.3 (s) 8.5 (s) 196 Re $^{3+1}_{-2}$ (s) 8.8 (s) 3.6 (s) 1.4 (s) 199 Os $^{5+4}_{-2}$ (s) 13.6(s) 106.8 (s) 6.6 (s) 200 Os $^{6+4}_{-3}$ (s) 21.7 (s) 187.1 (s) 6.9 (s) 199 Ir $^{6+5}_{-4}$ (s) 73 (s) 370.6 (s) 46.7 (s) 202 Ir $^{11+3}_{-3}$ (s) 8.6 (s) 68.4 (s) 9.8 (s)	¹³³ Cd	57 ± 10	57	185	47	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹³⁸ Sn	150 ± 60	113	336	240	
195Re 6^{+1}_{-1} (s) 23.9 (s) 3.3 (s) 8.5 (s) 196Re 3^{+1}_{-2} (s) 8.8 (s) 3.6 (s) 1.4 (s) 199 Os 5^{+4}_{-2} (s) 13.6(s) 106.8 (s) 6.6 (s) 200 Os 6^{+3}_{-3} (s) 21.7 (s) 187.1 (s) 6.9 (s) 199 Ir 6^{+5}_{-4} (s) 73 (s) 370.6 (s) 46.7 (s) 202 Ir 11^{+3}_{-3} (s) 8.6 (s) 68.4 (s) 9.8 (s)	e. $N \simeq 126$ - T. Kurtukian-Nieto et al. (FRS, GSI) 2009 [12]					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁴ Re	$1^{+0.5}_{-0.5}$ (s)	20.8 (s)	70.8 (s)	2.1 (s)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁵ Re		23.9 (s)	3.3 (s)	8.5 (s)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁶ Re	3^{+1}_{-2} (s)	8.8 (s)	3.6 (s)	1.4 (s)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹⁹⁹ Os					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	²⁰⁰ Os					
$\frac{202 \text{Ir}}{Log_{10}T_{8^{-}}} \frac{11_{-3}^{+3} \text{ (s)}}{8.6 \text{ (s)}} \frac{8.6 \text{ (s)}}{68.4 \text{ (s)}} \frac{9.8 \text{ (s)}}{9.8 \text{ (s)}}$						
$\sigma_{\rm rms}^{Log_{10}T_{\beta^-}}$ 0.45 0.77 -	²⁰² Ir	•		68.4 (s)		
		$\sigma_{ m rms}^{Log_{10}T_{eta^-}}$	0.45	0.77		

Table 1: β^- -decay halflives of newly measured r-process nuclides beyond Nubase as given by the ANN model, in comparison with experimental values and results from the pnQRPA+ffGT [3] and DF3+CQRPA [4] calculations.

Figure 1: β^- -decay halflives given by the ANN model for the r-ladder isotonic chains at N = 50, 82 and 126 and for the isotopic chain of Ir, in comparison with experimental and theoretical data.

References

- [1] M. Arnould, S. Gorielly and K. Takahashi, Phys. Repts. **450** (2007) 97; K.-L. Kratz, K. Farouqi, and B. Pfeiffer, Prog. Part. Nucl. Phys. **59** (2007) 147.
- [2] J. J. Cuenca-Garcia et al., Eur. Phys. J. A34 (2007) 99.
- [3] P. Möller, B. Pfeiffer and K.-L. Kratz, Phys. Rev. C67 (2003) 055802.
- [4] I. N. Borzov, Phys. Rev. C67 (2003) 025802; Private communication (2010).
- [5] T. Marketin, D. Vretenar and P. Ring, Phys. Rev. C75 (2007) 024304; Private communication (2010).
- [6] N. J. Costiris, E. Mavrommatis, K. A. Gernoth and J. W. Clark, Phys. Rev. C80 (2009) 044332.
- [7] G. Audi, O. Bersillon, J. Blachot and A.H. Wapstra, Nucl.Phys. A729 (2003) 3.
- [8] P. T. Hosmer, H. Schatz, A. Aprahamian, O. Arndt et al., Phys. Rev. Lett. 94 (2005) 112501.
- [9] J. Pereira, S. Hennrich, A. Aprahamian, O. Arndt, A. Becerril et al., Phys. Rev. C79 (2009) 35806.
- [10] F. Montes, A. Estrade, P. T. Hosmer, S. N. Liddick, P. F. Mantica et al., Phys. Rev. C73 (2006) 035801.
- [11] K.-L. Kratz, B. Pfeiffer, O. Arndt, S. Hennrich, A. Wöhr, et al., Eur. Phys. J. A25 (2005) s01,633.
- [12] T. Kurtukian-Nieto, J. Benlliure, K.-H. Schmidt, L. Audouin et al., Nucl. Phys. A827 (2009) 587c.
- [13] J. W. Clark and H. Li, Int. J. Mod. Phys. **B20** (2006) 5015.