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Aoki et al. 2007 ApJ 660,747 Frebel et al. 2005 Nature   434,871

Courtesy: C. Sneden
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The Coulomb barrier prevents an easy fusion between charged particles: only a 
combination of high temperatures, high densities and long timescales may lead 
to a substantial amount of fusion. 

Evidence

Even the fusion of the lightest nuclei, protons, requires 

                              T>several 106 K
                        >several grams / cm3

to burn a significant amount of nuclei on a timescale 
shorter than the age of the Universe

These conditions are met only in stars
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P

P+dP

dr

- GMρ / r2

dP/dr
Hydrostatic equilibrium:

dP
dr
=−

GM ρ

r 2

dM
dr
=4r 2 ρMass conservation:

r

r+dr

Equation of continuity:

A star is formed by a gas cloud that contracts under its own gravity and 
whose luminosity is produced in its interior

In many cases the contraction occurs on “long” timescales because matter naturally settles on a quasi equilibrium 
configuration in which the various forces acting on each element of matter tend to counterbalance each other:
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dP
dr
=−

Gm 

r 2

∫
0

M
dP
dr

r


dm=−∫
0

M
Gm

r
dm

−∫
0

M
Gm

r
dm=

Hydrostatic equilibrium

Gravitational potential energy

Ω may be regarded as the total amount of gravitational 
energy liberated in the contraction from “infinity” to the 

present configuration.

∫
0

M
dP
dr

r
ρ

dm=∫
0

M
dP
dm

dm
dr

r
ρ

dm=∫
0

M
dP
dm

4r 2
r


dm=∫
0

M
dP
dm

4r 3 dm
This can be integrated by parts

P 4 r 3
0

M
−∫

0

M

P 4
dr 3

dm
dm=−∫

0

M

P 43 r 2 dr
dm

dm=−∫
0

M

P
3


dm
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dP
dr
=−

Gm 

r 2

∫
0

M
dP
dr

r


dm=−∫
0

M
Gm

r
dm

−∫
0

M
Gm

r
dm=

Hydrostatic equilibrium

Gravitational potential energy

Ω may be regarded as the total amount of gravitational 
energy liberated in the contraction from “infinity” to the 

present configuration.

−∫
0

M

3
P


dm=

Let us firstly consider a perfect gas; in this case we can write:

At this point we need an equation of state, i.e. a relation between pressure and density

E=
3
2

NKT

P=NKT

P

=

2
3

uP=
2
3

E Where u  represents the 
energy per unit mass

−∫
0

M

3
2
3

u dm= −2 ∫
0

M

u dm =  −2 Ei=
= Ei  <= total internal energy

Virial Theorem (perfect gas)
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2 E i=0
Virial theorem (perfect gas)

ETOT=E i

∆Ω is negative! hence a contraction implies necessarily 
an increase of the internal energy Ei. However only 50% 
of the energy gained by the gravitational field remains 
locked in the star, the other 50% must be lost!

What does it mean?

Once again,  is negative!  Hence a contraction (<0) implies a reduction of the total energy.

E i=−
1
2


ETOT=−
1
2
 ETOT=

1
2


The requirement that some energy must be lost in a contraction introduces the idea that the contraction requires 
some finite timescale to occur, it cannot occur instantaneously. Since energy is basically lost through photons from 

the surface, this timescale is dictated by the efficiency of the outward photon flux. In other words no additional 
contraction may occur until the energy losses required by the virial theorem have been effectively lost!

E TOT=
1
2


What about the total energy of the system?

The system is more bound!
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dP
dr
=−

Gm 

r 2

∫
0

M
dP
dr

r


dm=−∫
0

M
Gm

r
dm

−∫
0

M
Gm

r
dm=

Hydrostatic equilibrium

Gravitational potential energy

Ω may be regarded as the total amount of gravitational 
energy liberated in the contraction from “infinity” to the 

present configuration.

−∫
0

M

3
P


dm=

Let us firstly consider a perfect gas; in this case we can write:

At this point we need an equation of state, i.e. a relation between pressure and density

E=
3
2

NKT

P=NKT

P

=

2
3

uP=
2
3

E Where u  represents the 
energy per unit mass

−∫
0

M

3
2
3

u dm= −2 ∫
0

M

u dm =  −2 Ei=
= Ei  <= total internal energy

Virial Theorem (perfect gas)
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dP
dr
=−

Gm

r 2

−∫
0

M
Gm

r
dm=

Hydrostatic equilibrium

Gravitational potential energy

Ω may be regarded as the total amount of gravitational 
energy liberated in the contraction from “infinity” to the 

present configuration.

−∫
0

M

3
P


dm=

−∫
0

M

3−1U dm= 3−1 E i=0
Generalized Virial Theorem

E i=0=
4
3

is very “special” because in this case E i=−
All the energy gained by the gravitational field is stored in 
the star (as internal energy) and no energy is lost outward.

ETOT=E i=−=0 For =4/3 a contraction does not increase the 
binding energy but leaves ETOT constant!

Since the contraction does not require the ejection of any energy no “delay” is necessary for a 
further contraction to occur. This is an unstable situation that leads to the collapse of the structure
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The second basic equation necessary to describe a stellar structure is 
the one that controls the energy transport through the star. 

Let us firstly assume that the energy is transported by radiation only:

The momentum (dq) transferred by a flux N of photons of frequency  per unit time is given by:

dq=N 
h
c
dr

dS dt

mean free path

Momentum per  photon

Mean number of interactions

photons

dr

N 

dq=−dPr dS dt=−
1
3
a dT 4 dS dt=−

4
3
a T 3 dT dS dtBut, the momentum transferred may be also expressed 

as the variation of the radiation pressure:

=
L 

4 R2 c
dr dS dt

By equating the two:

4
3
a T 3 dT

dr
=−

L 

4 R2 c

=
1
 

dT
dr
=−

3
16a c

  L

R2T 3

Opacity coefficient

2nd basic equation 

Associated continuity equation:

dL
dM
==nucgrav−
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dP
dr
=−

Gm

r 2

dM
dr
=4 r2



dT
dr
=−

3
16a c

 L

r2T 3

SUMMARIZING

The set of equations that describe the structure of a star is given by:

dL
dr
=4r 2



Hydrostatic equilibrium

Mass conservation

Energy transport (radiative case)

Energy conservation

+
Equation Of State,  i.e.  P (, T, c.c.)

Opacity coefficient,  i.e.   (, T, c.c.)

Energy generation coefficient,  i.e.   (, T, c.c.)

The solution of this system of equations is very difficult and requires COMPUTERS!
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but...

...we can try to be clever!
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dP
dr
=−

Gm ρ

r 2

P
R
∝

Mρ

R2 P∝ TρP∝
Mρ
R

dM
dr
=4 rπ 2 ρ

M
R
∝R2 ρ R∝ M

 
1
3

P∝M
2
3 ρ

4
3

T 3

ρ
∝M 2

}
Perfect gas

log T =K M 
1
3

log 

Interesting!
Just the hydrostatic equilibrium + perfect gas imply 
that the centre of a star must evolve along a straight 

line in the Log(Tc)-Log(c) plane.

What else?

The constant k scales inversely with the mass, so 
that the density increases as the mass decreases 

(for each fixed T) 

M1>M2>M3
We found that stars naturally separate in two 

basic groups: stars less massive than a critical 
value enter the region of electron degeneracy 

while the more massive ones don't!

P∝T 4 T 3

ρ
∝M 0.5

Pure radiation
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dP
dr
=−

Gm ρ

r 2

P
R
∝

Mρ

R2
P∝ TρP∝

Mρ
R

dM
dr
=4 rπ 2 ρ

M
R
∝R2 ρ R∝ M

 
1
3

P∝M
2
3 ρ

4
3 TR∝M}

Perfect gas

dT
dr
=−

3
16 ac

kρL

r 2T 3

T
R
∝

ρL

R2T 3 T 4R4∝ML
L∝M 3

What about the surface temperature of the star?

If we assume a black body: L=4R2
T eff

4

M 3∝R2T eff
4

and also that 
the central temperature is roughly 

independent on the mass : R∝M

T eff
4 ∝M T eff ∝M

1
4

10 MO

100 MO

When the radiation 
becomes important

L∝M 2.2

L∝M

P∝T 4

TR∝M 0.5

Pure radiation

Perfect gas

Pure radiation
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dP
dr
=−

Gm ρ

r 2

P
R
∝

Mρ

R2
P∝ TρP∝

Mρ
R

dM
dr
=4 rπ 2 ρ

M
R
∝R2 ρ R∝ M

 
1
3

P∝M
2
3 ρ

4
3

TR∝M

Perfect gas

What about the lifetime of the stars?

10 MO

100 MO

When the radiation 
becomes important

L∝M 2.2

τ∝ E
L

τ∝ qM
L

τ∝ qM
M 3
≈

1
M 2

τ∝ qM
M 2.2

≈
1
M 1.2

When radiation contributes 
significantly to the EOS

dT
dr
=−

3
16 ac

kρL

r 2T 3

T
R
∝

ρL

R2T 3 T 4R4∝ML L∝M 3

}
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We learned a lot of things up to now (without really solving any equation!)

the evolution of the core follows a straight line in the Log(Tc)-Log(c) plane 

hydrostatic equlibrium is “stable” because   > 4/3

If the EOS is dominated by a perfect gas:

Star less massive than a critical value enter the region where degenerate electrons count

Star more massive than a critical value do not enter the region where degenerate 
electrons count (at least until the central temperature does not exceed a few billions of K)

The energy losses from the surface (L) scale as M3 (perfect gas) or as M (pure radiation)

Star less massive than a critical value enter the region where degenerate electrons count

The lifetime of a star (t) scales as M-2

Unfortunately this is not enough ... it's time to introduce CONVECTION
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T 1

P1 P2
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T eddie

T 1

P1 P2

 dln T dln  P  adiabatic
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T eddie

T 1

P1 P2

 dln T dln  P  adiabatic

T 2

 dln T dln  P  radiative
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T eddie

T 1

P1 P2

 dln T dln  P  adiabatic

T 2

 dln T dln  P  radiative
mod  dln T dln  P radiativemod  dln T dln  P adiabatic

T eddieT 2

eddie2

P∝T=const

The buoyancy force f ≈− g


 

r
r

is negative and pushes back the eddie
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T eddie

T 1

P1 P2

 dln T dln  P  adiabatic
T 2

 dln T dln  P  radiative
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T eddie

T 1

P1 P2

 dln T dln  P  adiabatic
T 2

 dln T dln  P  radiative
mod  dln T dln  P radiativemod  dlnT dln P adiabatic

T eddieT 2

eddie2

The eddie is accelerated outward.
Large scale motions activate.

The buoyancy force f ≈− g


 

r
r is now positive
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T eddie

T 1

P1 P2

 dln T dln  P  adiabatic

T 2

T 2

Schwarzschild criterion!

 dln T dln  P  radiative
mod  dln T dln  P radiativemod  dln T dln  P adiabatic

T eddieT 2

eddie2

P∝ T=const

mod  dln T dln  P radiativemod  dlnT dln P adiabatic
T eddieT 2

eddie2

Convective 
motions

Both the temperature gradient and the mass extension of the 
convective regions are very difficult to compute properly and still 
constitute one of the major uncertainties in the stellar modelling.
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Which are the basic consequences of the growth of convective motions?

Matter is mixed.

1st side effect: new fuel pulled inward – products of burning pushed outward

2nd side effect: change of the mean molecular weight in the whole convective region

The temperature gradient can't become steeper than the adiabatic 
one in most of the interior of a star; only in the outer region it can 
raise towards the radiative one because of the inefficiency of the 
eddies in carrying the energy.
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At this point we are ready to follow the evolution of a star, but...

...first a “stupid” question...

Why should a star “evolve”? 

because...
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...stars lose energy (e.g. from the surface: the Luminosity) 

that must be replaced in order to mantain the hydrostatic equilibrium!

Nuclear reactions (energy is extracted from the fusion of nuclei)

Side effect => mean molecular weight increases (P decreases)

Energy may be gained by either:

contraction (energy  is extracted from the gravitational field)

Side effect => the interior heats (Virial theorem)

and / or
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Intermediate –High mass stars:
Super - AGB

Electron capture supernovae

Massive stars:
Go through all burnings up to the Nuclear

Statistical Equilibrium

Intermediate-High mass stars:
Super – AGB

O,Ne,Mg white dwarfs

Low mass stars:
RGB

He white dwarfs

Intermediate mass stars:
AGB

CO white dwarfs

0.1 MO

Critical masses:

H ignition (4P => 4He)

0.5 MO
He ignition (off center, degenerate) (3 4He => 12C)

2.3 MO
He ignition (central, not degenerate)

7 MO
C ignition (off center, degenerate) (2 12C => 20Ne+α)

8 MO
C ignition (central, not degenerate)

10 MO
All burnings up to the NSE
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Hydrostatic evolution

H-burning

He-burning

C-burning

Ne-burning

O-burning

Si-burning

Core collapse

Explosive nucleosynthesis

Bounce at nuclear densities

Formation of the shock wave

yields

Hydrodynamic evolution

T
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m

m

m

γ

m

γ

γ

γ

CNO cycle

Convective core

H – burning: luminosity and lifetime

PTOT=PradPgas

L∝M 2.2

PTOT=P gas

L∝M 3
t∝ M

L
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N

12C 13C

14N 15N

16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

P

20 MK
25-30 MK

p
13C

γ
14N

15O

15N12C

p

p
13N

p

γ

γ
α

16O17F17O

p

e+

ν

p

γe+ ν

ν
e+

p

α

γ

P P
P P

P N
PN

 26.73  MeV+
2 per  carry away 
part of the energy

Energy budget

6.44 1018 erg g−1

50 MK
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Trailer time!

H burning movie
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N

12C 13C

14N 15N

16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

P

20 MK

25-30 MK

P P
P P

P N
PN

 26.73  MeV+
2  per   carry away 
part of the energy

Energy budget

6.44 1018 erg g−1

Basic effects of the H burning 
on the elemental abundances:

H converted in He (strong neutronization) 

O & C converted in N (becomes the most abundant 
element after H and He!) 

Redistribution among Ne – Na – Mg – Al  

F destroyed

50 MK
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H – burning: mass loss

L2 . 2

M1. 3
∝M (O B stars)

.
& (Teff , Vinf / Vesc)
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120 

12

H rich mantle

He core
H He

C ,O ,F −N 
Ne , Na ,Mg , Al , Si

He core
H He

C ,O ,F −N 
Ne , Na ,Mg , Al , Si
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γγ

γ

γ

Convective core
He core

3α + 12C(α,γ)16O

H burning shell

m m

mm

The central He burning

All stars form a convective core

The physical evolution of the star requires 
the inclusion of just 2 processes:

α(2α,γ)12C  and 12C(α,γ)16O

The chemical evolution of the star requires 
the inclusion of many, many processes 
because an efficient n producing chain 

activates:

14N(α,γ)18F(β+)18O(α,γ)22Ne(α,n)25Mg

Note that the 14N abundance is roughly equal to the initial 
abundance of the sum of the CNO nuclei that are more than 

70% of the initial metallicity of the star!
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Trailer time!

He burning movie
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The central He burning

The n emitted by the 2 2Ne(,n)2 5Mg process are mainly 
captured by the Fe peak nuclei  so that nuclei up to A=90 

(S weak-component) are produced
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M
T

 O
 T

 <
 M

H
  e

M
T

 O
 T

 <
M

H
  e

  C
  C
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WNL X<0.4

WNE X=0

WCO

H rich mantle

He core

C/N<0.1

WC =>C/N<10

Log10(Te f f)>4.0
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WNL

WNE

WCO

< 30 MO <RSG

RSG

WNL

WNE

RSG

WNL

WNE

WCO

WNL

WNE

WCO

Summarizing: < 40 MO < < 60 MO <
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νν

νν
He core

CO core Central
burning

Let’s enter the advanced burnings...

γ

γ
e+

e-

ν

ν
When this happens, + begin to efficiently 

produce electrons-positron pairs.

A blackbody radiation has its maximum wavelenght at : λM A X=2.898 10 - 3  T - 1 [m / K]

BUT: 

E = hν = hc/λ = hcT/(2.898 10 - 3) = 4.3 10 - 1 0 T [MeV]

HENCE:

T = E/ 4.3 10-10 =0.5 / 4.3 10-10 => 1.15 109 K

The central temperature at the central He exhaustion is of the 
order of 4 108 K and at roughly 8 108 K the next fuel, carbon, 

starts burning.
But in the mean time....

...as the temperature increases, the peak of the Planck distribution moves towards higher 
energies and the number of photons having energy equal to 0.511 MeV (i.e. the mass of the 

electrons) increases dangereously. 
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6.44 101 8 erg gr-1

5.84 101 7 erg gr-1

1.85 101 7 erg gr-1

2.89 101 7 erg gr-1

Si=>Ni 1.88 101 7 erg gr-1

O=>Si

C=>Ne

He=>C

H=>He

t = E / L

t = 1.06 101 1 (L/L0)-1    [yr / MO]

t = 9.64 109 (L/L0)-1      [yr / MO]

t = 3.05 109 (L/L0)-1      [yr / MO]

t = 4.77 109 (L/L0)-1      [yr / MO]

t = 3.10 109 (L/L0)-1      [yr / MO]

Energy budget
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6.44 101 8 erg gr-1

5.84 101 7 erg gr-1

1.85 101 7 erg gr-1

2.89 101 7 erg gr-1

Si=>Ni 1.88 101 7 erg gr-1

O=>Si

C=>Ne

He=>C

H=>He

M=80 MO t = E / 106

L => total luminosity: L γ

   Mcc
Estimated 

lifetime
Real

lifetime
Revised
lifetime    LT  O  T

     60
   
   6 106   3.2 106     106

     20    2 105   3.3 105      106

    1.5   4.5 103   4.7 102       106

      1   4.8 103   4.6 10-2    106

      1   3.1 103   4.3 10-3     106
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6.44 101 8 erg gr-1

5.84 101 7 erg gr-1

1.85 101 7 erg gr-1

2.89 101 7 erg gr-1

Si=>Ni 1.88 101 7 erg gr-1

O=>Si

C=>Ne

He=>C

H=>He

M=80 MO t = E / 106

L => total luminosity: L γ + L ν

   Mcc 
Estimated 

lifetime
Real

lifetime
Revised
lifetime    LT  O  T

     60
   
   6 106   3.2 106     106

     20    2 105   3.3 105      106

    1.5   4.5 103   4.7 102   4.5 102      107

      1   4.8 103   4.6 10-2   4.8 10-2    101 1

      1   3.1 103   4.3 10-3   3.1 10-3     101 2
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All the advanced phases are really neutrino dominated...



P
o
S
(
N
I
C
 
X
I
)
2
9
6

  

12C 13C

14N 15N

16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

P

N

C burning
Typical temperature: 0.8-1.0 BK 

large n production

s process nucleosynthesis

weak component

C burn

120 MO
12 MO
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C burning

Just the main processes in ...
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16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

P

N

Ne burning

Typical temperature: 1.3-1.6 BK 

28Si 29Si 30Si

Ne burn
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Ne burning

Just the main processes in ...
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16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

P

N

28Si 29Si 30Si

31P

32S 33S 34S 36S

35Cl 37Cl

36Ar 38Ar 40Ar

O burning

Typical temperature: 2.-2.5 BK 

Convective core always of 
the order of 1-1.5 MO

O burn
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O burning

Just the main processes in ...
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16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

P

N

28Si 29Si 30Si

31P

32S 33S 34S 36S

35Cl 37Cl

36Ar 38Ar 40Ar

neutronization

Ye
= xi

Zi

Aii=1,n

Definition:
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16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

28Si 29Si 30Si

31P

32S 33S 34S 36S

35Cl 37Cl

36Ar 38Ar 40Ar

P

N

Main weak processes in O burning

P N

PN

Matter tends to neutronize !

Ye
= xi

Zi

Aii=1,n

Definition:

β+

β-

neutronization
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Beginning of the O burn

End of the O burn

Beginning of the O burn

end of the O burn

15 MO80 MO

Degree of neutronization depends on the 
initial mass (actually on CO core mass)

RULE: The smaller the MC O the higher the degree of 

neutronization at the end of the central O burning.

Ye
= xi

Zi

Aii=1,n

Definition:

neutronization



P
o
S
(
N
I
C
 
X
I
)
2
9
6

  

Beyond the O burning

Rij

i ( j , k ) m m ( k , j ) i Reverse process

Rmk

Rate of the i(j,k)m process

Rate of the m(k,j)i process

Φi j
=

Rij Rmk

Max(Rij,Rmk)

Φ= 0 means perfect equilibrium

Φ =1 means one process dominates 
over the other
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The approach to the Nuclear Statistical Equilibrium

T=1.9 BK

Almost all the processes 
are far from the 

equilibrium with their 
reverse

Beginning of the O burning
Ye=0.4987
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The approach to the Nuclear Statistical Equilibrium

T=2.7 BK

A first cluster forms 
between A=31 and and A=45

End of the O burning
Ye=0.4978

Definition: a CLUSTER is a group of nuclei connected by 
processes that are at the equilibrium with their reverse.

A=31

A=45
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The approach to the Nuclear Statistical Equilibrium

T=2.9 BK

The first cluster extends now 
between A=28 and A=45

but
a second one forms at A>50

A little bit before the Si burning
Ye=0.4976

A=28

A=45

A=50

Within each cluster the abundances of the various nuclei depend on their equilibrium with respect to the sea of α and 
p. Such an equilibrium abundance is determined by an equation that looks like a Saha equation:

Y(n,z)=f (ρ,T,a nucleus not in equilibrium)
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The approach to the Nuclear Statistical Equilibrium

T=3.4 BK

The two clusters begin to 
merge and form an unique 
cluster that starts at A=28

Beginning of the Si burning
Ye=0.4955

28Si is not at the equilibrium. It is destroyed by the γ,α photodisintegration



P
o
S
(
N
I
C
 
X
I
)
2
9
6

  
16O 17O 18O

19F

20Ne 21Ne 22Ne

23Na

24Mg 26Mg25Mg

27Al

28Si 29Si 30Si

31P

32S 33S 34S 36S

35Cl 37Cl

36Ar 38Ar 40Ar

P

N

Actually the whole photodintegration from 2 8Si to 
the α  is out of the equilibrium and regulates the 

timescale over which the a are liberated (and hence 
redistributed among the various nuclei)

α

α

α
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The approach to the Nuclear Statistical Equilibrium

T=3.4 BK

The two clusters begin to 
merge and form an unique 
cluster that starts at A=28

Beginning of the Si burning
Ye=0.4955

28Si is not at the equilibrium. It is destroyed by the γ,α photodisintegration
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The approach to the Nuclear Statistical Equilibrium

T=4.1 BK

Nuclei with A<28 do not 
reach the equilibrium

End of the Si burning
Ye=0.4780

Most of the matter located in the nucleus(i) that has(ve) the highest binding energy for the 
Ye present at the moment. Remember that the weak processes are not at the equilibrium 

and must be taken into account explicitly!
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At 5 BK full Nuclear Statistical equilibrium is attained

The abundances of the various nuclei are governed by a set of equations of this kind:

n
n
Yz

p
YeTfznY KT

znQ

⋅⋅⋅=
− ),(

),(),( ρ

The system is closed by the conditions:

1=
⋅

∑
∑

i

ii

Y

AY

Ye = constant (at each time)

The abundances of all nuclei depend only on ρ , T and Ye

Mass conservation

Electron mole number 
conservation
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Most abundant elements in NSE conditions as a function of the temperature

389 g/cm 10 K  105 =⋅= ρT
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Trailer time!

C, Ne, O & Si burning movie
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H

He

C

O
Si
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H

He

C

O
Si

12 MO

120 MO

3 γ−1U=0

Virial theorem

γ= 4
3

U≡ETOT=0

NO delay is required for a contraction,

 the structure is only marginally stable

ΔE
TOT

≡0
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10,10,0.42
48Ca(0.48)

What happens to the inner core after the central Si burning?

Maxim
um binding energy per n

ucleon

NSE abundances

 readjust to the increasing T and ρ

and to the decreasing Ye

5,1,0.5
56Ni(.9)

10,1,0.5
α(0.9)

2.
4 

10
1 

5  e
rg

/g
r

10,10,0.5
α(0.2)

54Fe(0.18)

7.4 10
1 4  erg

/gr

3.7 101 4  erg/gr

E
n

e
rg

y
 a

b
s

o
rb

e
d

 b
y

 t
h

e
 c

h
a

n
g

in
g

 o
f 

th
e

 N
S

E
 a

b
u

n
d

a
n

c
e

s

time
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H

He

C

O
Si

12 MO

120 MO

3 γ−1U=0

Virial theorem

γ= 4
3

U≡ETOT=0

NO delay is required for a contraction,

 the structure is only marginally stable

ΔE
TOT

≡0

Electrons relativistic and degenerate
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The passage from an NSE configuration to another one of higher T,ρ and 
lower Ye absorbes energy and hence speeds up the contraction.

Electrons become relativistic degenerate, so that =4/3

The weak processes substract electrons and hence pressure. 

T
The reduction of the pressure worsens the problem because it translates in a 
further contraction, electron more relativistically degenerate and stronger 
weak processes.

No configuration equilibrium exists any more and the collapse starts

Sequence of events that lead to the collapse

The Chandrasekhar mass reduces because  MCH= 5.76 (Ye)2
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Basic core collapse scenario

Si exhausted core
(Fe core)

inner core
0.7 MO

The inner 0.7-1 MO starts collapsing

The collapse stops only when matter 
reaches the nuclear densities:

≃1014 g cm−3

If we assume that the density is constant throughout 
the collapsing core, we can easily estimate the final 

radius of a giant “NUCLEUS” of 1 MO:

because at this stage matter becomes incompressible

M=
4
3
R3 R= 3

4
M
 

1 /3

≃17 Km

=−∫
0

M
G M
R

dm=−
3
5
GM 2

R

= final−initial=−
3
5
GM 2  1

R final

−
1

Rinitial  ≃−1.58 1059  1
R final



If, for simplicity, we assume constant density:

≃1.61053erg
(assuming a radius of 10 Km)
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Is this energy enough to drive a successful explosion?

Initial pot: 1.6⋅1053erg MO
−1

As T and  increase, NSE favors P and N so we must consider the energy required to dissociate nuclei in P and N:

E=28MP28MN−M 
56 Ni 1.49⋅10−3 6.022⋅1023

56
1.989⋅1033=1.7⋅1052 erg M O

−1

Inventory:

Most of the P tend to convert in N as nucleons begin to feel their fermion soul:

E=M N−M P−M e1.49⋅10−3 6.022⋅1023

1
1.989⋅1033=1.5⋅1051erg MO

−1

But in this process also neutrinos are emitted:

E=201.6⋅10−6 6.022⋅1023

1
1.989⋅1033=3.8⋅1052 erg MO

−1 assuming E=20MeV

The energy available to drive the explosion is therefore given by:

1.6⋅1053
−1.7⋅1052

−1.5⋅1051
−3.8⋅1052

≃ 1053 erg M O
−1
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Is this energy enough to drive a successful explosion?

Inventory:

… so we are left with ≃ 1053 erg MO
−1

Binding energy of the mantle as a function 
of the mass coordinate

120 MO

80 MO

40 MO

20 MO

11 MO

                 in the worst case≃ 3⋅1052 erg

Observations show that some kinetic energy 
is provided to the ejecta and it ranges, 
roughly, between:

1050
−1052 erg

So in principle there is plenty of energy 
to drive a successful explosion!
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Basic core collapse scenario

Unfortunately most of the energy gained during the collapse is emitted as  and not as !

The reason is that, the relative proportions between P and N in the giant “nucleus” are 
kept at their equilibrium value by the two very efficient processes :

en⇔ pe−  e p⇔ne


Gain region

Cooling region

 sphere

en⇒ pe
−

 e p⇒ ne


en⇐ pe
−

 e p⇐ ne










en⇔ pe−

 e p⇔ne


50 Km

A≃10−44N 2  E
MeV 

2

cm2

The mean free path  between two successive interactions between the 
particles i and j is given by:

=
1


Where , the “opacity”, may be 
expressed in terms of the probability 
ij that an interaction between the 
particles i and j occurs:

The basic interaction between  and a nucleus A is given by the neutral 
current coherent scattering , whose cross section is given by:

=
N A

A
 A

=
A

N AA
=

1

6.022⋅102310−44 102

≃

1.71018


cm

10
0 

K
m

ν diffusion timescale: 10 s
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Basic core collapse scenario

What it is even worst is that the shock wave lose a large amount of energy on its way 
out:

The reason is that it fully photodisintegrates matter as it advances in mass. 

For example: 56Fe => 30 n + 26 p requires the absorbtion  of 7.87 10 - 4 erg (492 MeV) 

8.47 101 8 erg/gr => 10 5 1 erg / 0.1 MO
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surface

Fe core

shock front

In spite of the many efforts, no successful 
explosion has been obtained yet

Escamotage:
Assume that the shock wave escapes the 

dense core (roughly the Fe core) 

Since the explosion is not obtained “naturally” 
a few assumptions are unavoidable:

1) Energy  deposited in the shock front

2) Formation of a shock driven convective 
zone
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Three different tecniques have been used up to now:

The piston (Woosley and coworkers)

The thermal bomb (Nomoto and coworkers)

The kinetic bomb (Limongi and Chieffi)

surface

Fe core

shock front
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rr1

T1

BASIC PROPERTIES OF THE SHOCK WAVE AFTER IT HAS ESCAPED THE DENSE FE CORE:

Fe core

RADIATION DOMINATED:

ADIABATIC EXPANSION:

r2

T2

The peak temperature of the blast wave 
does not depend on the stellar structure.

CONSEQUENCE:

A simple but quite effective computation of 
the explosive yields may be obtained by 
assuming:

E=
4
3
r3aT 4

T=const⋅r
3
4

T t =T peak e
−t /
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Basic properties  of the explosive burnings

The typical burning timescale for the destruction of any given nuclear specie is given by:
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86

The timescales for the destruction of H, He, C, Ne, O and Si are 
determined by these nuclear reactions:

and in general are functions of temperature and density:

He burning:

C burning:

Ne burning:

O burning:

Si burning:

CHARACTERISTIC EXPLOSIVE BURNING TEMPERATURES



P
o
S
(
N
I
C
 
X
I
)
2
9
6

87

If we take typical explosive burning timescales of the order of 1s

Explosive C burning

Explosive Ne burning

Explosive O burning

Explosive Si burning

CHARACTERISTIC EXPLOSIVE BURNING TEMPERATURES
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NSE QSE 2QSE

Sc
Ti
Fe
Co
Ni

V
Cr
Mn
Ti
Fe
Si
S
Ar
Ca

Si
S
Ar
Ca
K

Ne
Na
Mg
Al
P
Cl

f(ρ ,T,Ye) f(ρ ,T,Xi)
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120 MO

80 MO

40 MO

20 MO

11 MO

Let's come back to the exploding star. Since a self consistent determination of the 
energy escaping the Fe core is not yet available, we are forced to fix “by hand” a value.

The energy of the shock wave is fixed by imposing that some “observable” is reproduced: 
usually 

the kinetic  energy of the ejecta 
and/or 

the amount of 56Ni ejected 

If the energy assumed to escape the Fe core is too low, all the 
star will fall back in to the remnant (no matter will be ejected).

General considerations

If the energy assumed to escape the Fe core is high, all the 
mantle will be ejected.

In the intermediate cases part of the mantle will fall back on 
the remnant and part will be ejected in the interstellar 
medium.

Basic definitions:

Mass cut:  maximum mass that will always move inward 

Fall back:  mass that initially is kicked off but that then falls 
back on the collapsed core. 

Remnant mass:  mass cut + fall back  (final mass size of the  
collapsed core).
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Fall back

Mass cut

ejecta

time

ve
lo

ci
ty

Very schematically:

Remnant mass
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FALL BACK AND FINAL REMNANT
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Final kinetic energy = 1 foe (105 1 erg)
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Fe core

Complete explosive Si burn

Sc – Ti – Fe – Co – Ni - 56Ni

Incomplete explosive Si burn

Explosive O burn

Fe coreRemnant mass

Si – S – Ar – Ca – K 

Ne – Na – Mg  Al – P – Cl  

V – Cr –
 M

n – Ti –
 Si

S – Ar – Ca – 56Ni
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Fe core

Complete explosive Si burn

Sc – Ti – Fe – Co – Ni - 56Ni

Incomplete explosive Si burn

Explosive O burn

Fe coreRemnant mass

Si – S – Ar – Ca – K 

Ne – Na – Mg  Al – P – Cl  

V – Cr –
 M

n – Ti –
 Si

S – Ar – Ca – 56Ni
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Fe core

Complete explosive Si burn

Sc – Ti – Fe – Co – Ni - 56Ni

Incomplete explosive Si burn

Explosive O burn

Si – S – Ar – Ca – K 

Ne – Na – Mg  Al – P – Cl  

V – Cr –
 M

n – Ti –
 Si

S – Ar – Ca – 56Ni

mixingFe core

Mn – Sc – Ti – Fe – Co – Ni – Cu – Zn  

Si – S – Ar – Ca – K – V – Cr 

56Ni

Remnant mass

Mixing before fall back
scenario 
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Mass Loss in the WNE / WCO phases:    Langer89   -    Nugis & Lamers 00
1 foe
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Mass Loss in the WNE / WCO phases:    Langer89   -    Nugis & Lamers 00
1 foe
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)1( xkm
dm

dN +−=

∫ −
−

==
−−2

1

122
1

)(
m

m x

mm
kdm

dm

dN
kN

xx
m
m

∫ +−
−

==
+−+−2

1

1
1

1
22

1 1

)(
m

m x

mm
kdm

dm

dN
mkM

xx
m
m

)(
1

12

2
1 xx mm

x
km

mN −− −
−=⇒=

∫=
2

1

)(
m

m
dm

dm

dN
mYkY ii

Yields produced by a generation of massive stars 

Salpeter initial mass function

M1 < massive stars < M2

)(

1
1

1
1

1
2

2
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X=1.35  classical

X=1.7-1.8 Kroupa (for massive stars)

total yield

Normalization:



P
o
S
(
N
I
C
 
X
I
)
2
9
6

  

PF>1 (produced)               PF< 1 (destroyed)               PF=1 (untouched)

A flat PF factor implies that the initial relative scaling among the various nuclei is preserved

This means that an initial scaled solar distribution is preserved if the PF is flat

Since the solar chemical composition mainly reflects the ejecta of star having “quasi” solar c.c.,

a “roughly” flat PF  should be typical of a generation of stars having a solar metallicity

A natural, robust “leader” nucleus is 1 6O because it is certainly produced only by massive stars 
and it is also the most abundant nucleus in nature (beyond H and 4He)

If a nucleus has a PF at same level of that of the O, this means that it comes from massive stars only

If a nucleus has a PF lower than that of the O, in principle this would simply mean that massive stars 
are not the main producers of that nucleus

If a nucleus has a PF larger than that of the O, this could be a problem since it would imply that it 
is overproduced (note however that “secondary” nuclei must be slightly  overproduced)

PF=
Yield

X initialM ejected
Production factor
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He  4He−H

C 12C −He

N 14N −H

O 16O −He

F 19 F Destroyed by H

Ne 20Ne−C

Na 23Na−C

Mg 24Mg −C

Al  27 Al −C

Si  28Si −OX , Si Xi
P 31 P −C X , NeX

S 32 S −O X , Si Xi

Cl 35Cl −C X , Ne X

Ar 36 Ar −O X , Si Xi

K 39K −O X

Ca 40Ca−O X , Si Xi

Sc  45 Sc−C , Si X

Ti 48Ti−Si Xi

V 51V −Si Xi
Cr 52Cr −Si Xi
Mn 55Mn−Si Xi

Fe 56 Fe −Si Xi , Si X
Co 59Co−C ,Si X
Ni 58Ni −Si X
Cu 63Cu−C , Si X

Zn 64Zn−He ,Si X

WARNING
The production site of many elements depends 
on the mass of the star and the initial chemical 

composition.
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He burn. C shell burn.

H burn.

Expl. O burn.
&

Incomplete expl. Si burn.

Expl. O burn.

Incomplete expl. Si burn.

NSE ( complete expl. Si burn.)
He & C shell burn (n-capt. 

nucleosynthesis)
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RSG RSG+WR BSG+WR

W
NE

W
NL

W
CO

BLACK  HOLE

NEUTRON STAR

Type 
II

Type 
I bc

Final m
ass
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RSG RSG+WR
BSG+WR

W
NE

W
NL

W
CO

B
L
A

C
K

  
H

O
L
E

NEUTRON STAR

Type 
II

Type 
I bc

Final mass

NEUTRON STAR

In
it
ia

l m
as

s

Ba
se

 c
on

ve
ct

iv
e 

en
ve

lo
pe

H
 c

on
ve

ct
iv

e 
co

re

M HC
=0

He 
co

re

He co
nvecti

ve co
re

He convective shell

C convective shellOuter border of the 
explosive burningsFe core 

mass

CO core
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M(44Ti)=1.6 10-4 MO

M(44Ti)= 3 10-5 MO

Cas A as seen by IBIS – ISGRI aboard INTEGRAL at 25 - 40 KeV

Observed:

Predicted:

Distance 3 Kpc  --  335 yr old  --  Mini 30 MO  Mend 16 MO 

3 lines : 67.9 KeV, 78.4 KeV, 1.157 MeV
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44Ti

Not produced in a normal freeze out

Critical phase

Produced in the -rich freeze-out of zones 
exposed to the  complete explosive Si burning

( 312C(,)16O(,) … NSE )

cooling  << build up
cooling  >>build up
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