Experiments in nuclear astrophysics II (neutron-induced)

René Reifarth

X

GSI Darmstadt/University of Frankfurt

WE-Heraeus Summer School on Nuclear Astrophysics in the Cosmos Darmstadt/Heidelberg 12-17 July 2010

solar abundance distribution

Nucleosynthesis of the elements

Rene Reliarti (GSL/ O. Frankluit)

s-process in AGB stars

Nucleosynthesis

s-process nucleosynthesis

Two components were identified and connected to stellar sites:

What's needed?

Stellar model vs. experiment

Neutron Captures – time-of-flight technique

branch point in the s-process path

(n,g) experiments with unstable isotopes and fundamental stellar physics evaluations

Branch Isotope	Half- Life	Facility	Observable	Stellar Physics	Comment
¹⁵¹ Sm	93 yr	FZK, n_TOF, DANCE	 ¹⁵²Gd in solar distribution ¹⁵¹Eu/¹⁵³Eu ratio hyperfine line split 	Timescale of hot Helium-shell flash XI s-process in very old stars 3	done
¹³⁴ Cs	2 yr	DANCE, FRANZ	Ba isotope ratios from presolar grains	Sets ¹² C abundance of He-shell flash	current uncertainty: ± 30%
¹³⁵ Cs	2 Myr		Ba isotope ratios	Amount of rotation	± 10%
⁹⁵ Zr	64 d	FRANZ/ FAIR	⁹⁶ /Zr/ ⁹⁴ Zr ratio presolar grains	Temperature at bottom of He- shell flash region	Current uncertainty: 20 - 80 mb

experimental problems

unstable isotope

- sample preparation
- very small amounts
- radioactive background

⇒activation technique

high precision

- neutron induced background
- isotopic impurities
- statistics

⇒TOF technique,
⇒calorimetric

Red Giants – easy to spot

Red Giants become White Dwarfs

Ring nebula illuminated by the White Dwarf in the center.

branch point at ¹²⁸I

- 2 **s-only** isotopes
 - temperature and electron density dependent
- no dependency on neutron flux

⇒ stellar thermometer

Meteorites – hints from the sky

See lecture by Ernst Zinner!

evidence for neutron capture: DIRECT

 $^{A}X + n \Rightarrow ^{A+1}X + \mathbf{O}$

Pos (NIC

) TX

ω0

⇒ "monoenergetic" if 100 % efficiency

- Negative Q-value (-1.644 MeV)
 - Neutron spectrum close to threshold depends strongly on proton energy
 - Q-value in reach for small accelerators
- Huge cross section close to threshold

René Reifarth (GSI / U. Frankfurt)

experimental setup

neutrons:

• ⁷Ei (p, n)

- 1²/₁, 200 keV
- 10⁴ n / s cm²
- 80 cm flight path

γ-Detector:

- 41 BaF₂ crystals
- 15 cm length
- $\varepsilon_{\gamma} \approx 90 \%$
- $\varepsilon_{\rm casc} \approx 98 \%$

Schematic TOF spectrum

samples

- isotopically enriched ^{128, 129, 130}Xe
- 0.5 .. 1 g per sample
- (NT • filled in Ti-spheres ($R_{in} = 4.8 \text{ mm}_{\times}^{12} R_{out} = 5$ mm)
- p = 60 bar

sum spectra

- Peak at neutron-binding energy
- $\varepsilon_{casc} = 96 ... 98 \%$
- energy threshold: 1.6 MeV
- relative to $^{197}Au(n,\gamma)$

multiplicity

discrimination of natural background

(n, γ): 90% multiplicity ≥ 3

natural background: multiplicity ≤ 2 .

COUNTS PER CHANNEL

sample dependent background

time of flight

- background due to scattered neutrons delayed
- σ_{tot}/σ_γ(¹²⁸Xe) = 25.

^{128, 129, 130}**Xe(n,γ)-cross sections**

- Need to increase neutrons/proton
- n/p=10⁻⁶ for ⁷Li(p,n)
- Idea: high energy protons use most of their energy to knock out neutrons from a heavy nucleus - <u>spallation</u>
- Now n/p between 20 (LANSCE,SNS) and 250 (n_TOF)

LANSCE @ LANL

René Reifarth (Corr C. Hankluit)

Manuel Lujan Jr. Center

FP 14 views the second-tier coupled water moderator.

Neutron spectrum at spallation sources

s-process nucleosynthesis in the region between iron and tin with the important branching at ⁶³Ni

Problems:

- small cross sections
- resonance dominated
- contributions from direct capture
- propagation effects

Detector for Advanced Neutron Capture Experiments

neutrons:

- 0
- spallation source
- thermal .. 500 keV
- 20 m flight path
- 3 10⁵ n/s/cm²/decade γ-Detector:
- 160 BaF₂ crystals
- 4 different shapes
- R_i=17 cm, R_a=32 cm
- 7 cm ⁶LiH inside
- $\varepsilon_{\gamma} \approx 90 \%$
- $\varepsilon_{casc} \approx 98 \%$

Background due to (n,n)

Reduction due to ⁶LiH shell ($R_i = 10.5 \text{ cm}, R_a = 16.5 \text{ cm}$)

Simulated effect of the ⁶LiH absorber

⁶²Ni(n,g) at DANCE

A. M. ALPIZAR-VICENTE et al., PRC 77, 015806 (2008)

New high-resolution campaign has been performed at n_TOF

Propagation effects in the weak s-process

Nassar et al., Phys. Rev. Lett. 94, 092504 (2005)

⁶³Ni(n,g) performed at DANCE

No experimental data exist so far (only transmission measurements)

Evidence for neutron capture: *INDIRECT*

Produced Activity:

$$A \propto \frac{{}^{A}N \cdot \Phi_{n} \cdot \sigma}{t_{1/2}} \cdot t_{a}$$

Neutron Capture on ¹⁴C

Verification of Coulomb Dissociation (CD) as an indirect method • for determining (n, γ) rates

POS

- **Big Bang Nucleosynthesis** •
- Neutron-induced CNO cycles s-process •
- Neutrino-driven winds r-process •

¹⁴C - sample

- 283 mg ¹⁴C ($t_{1/2}$ = 5.7 ka), determined from decay heat POS (NIC
- carrier: ^{nat}C, activated Ni-container
- active impurities:

21x12 mm² diameter

activation only (presently) feasible method

X

Activation Method

¹⁴C(n,γ)¹⁵C reaction detected via ¹⁵C(β⁻)¹⁵N decay ($t_{1/2}$ =2.5 s)

¹⁴C sample irradiated for 10 s, then activity counted for 10 s ("cyclic activation")

Determination of neutron flux via $^{197}Au(n,\gamma)^{198}Au$

Neutron source:

⁷Li(p,n)⁷Be

R. Reifarth et. al, PRC C 77, 015804 (2008)

A standard neutron spectrum – working horse!

Other neutron spectra

$^{15}C - \gamma$ -spectra

Description and Deconvolution

Comparison with other rate estimates

Comparison with CD

Future developments

• Ever more neutrons

Indirect methods

PoS(NIC XI)303

The <u>Frankfurt neutron source at the Stern-Gerlach-Zentrum</u> (FRANZ)

The Frankfurt neutron source will provide the highest neutron flux for a nuclear astrophysics program in relevant keV region (1 – 500 keV) worldwide.

Neutron capture measurements of small cross sections:

- Big Bang nucleosynthesis: ${}^{1}H(n,\gamma)$
- Neutron poisons for the s-process: ${}^{12}C(n,\gamma)$, ${}^{16}O(n,\gamma)$, ${}^{22}Ne(n,\gamma)$.
- ToF measurements of medium mass nuclei for the weak s-process.

Neutron capture measurements with small sample masses:

- Radio-isotopes for γ -ray astronomy ⁵⁹Fe(n, γ) and ⁶⁰Fe(n, γ)
 - Branch point nuclei, e.g. 85 Kr(n, γ), 95 Zr(n, γ), 147 Pm(n, γ),

¹⁵⁴Eu(n, γ), ¹⁵⁵Eu(n, γ), ¹⁵³Gd(n, γ), ¹⁸⁵W(n, γ)

Setup with very short flight path

Challenge: Neutrons bouncing around in the detector

TOF spectrum-very short flight path

Motivation – ⁶⁰Fe in the universe

Detection of γ -ray lines from interstellar ⁶⁰Fe with SPI (INTEGRAL)

$$E_{\gamma} = 1173 \text{ and } 1333 \text{ keV}$$

 $\overset{\square}{=} 0^{\square}_{\square} 1 \pm 0.03$

ongoing production in massive stars and

distribution by subsequent supernovae

Harris et al, A&A 433 (2005) L49

Motivation – ⁶⁰Fe on earth

- can be found in deep sea manganese crusts
- Gives hints about a nearby supernova
- 2.8 Ma ago

Knie et al, PRL 93 (2004) 171103

⁶⁰Fe in stars

- Weak s-process component
- During C-shell burning in massive stars

Production and Destruction of ⁶⁰Fe

Double neutron capture

- produce the sample "on the fly"
- 10¹² n/s/cm² @ 25 keV ~ 5 10³ n/cm³

⁵⁹Fe(n, γ) at FRANZ (t_{1/2}=45 d)

René Reifarth (GSI / U. Frankfurt)

- Method for radioactive beams:
 - Inverse kinematics
 - "virtual photon field" as result of relativistic interaction with high-Z target (lead)
 - Produce beam of radioactive ions
 - In-beam experiment
 - Detect ALL prompt products
 - Gammas
 - Ions

Experimental method

Astrophysically relevant energy window: $E_{\gamma} \approx S_n + kT/2 = 8-12$ MeV, width ~ 1 MeV

Coulomb dissociation in inverse kinematics:

- Virtual photons produced by a high-Z target (Pb)
- Projectile at ~500 MeV/u
- Large impact parameter b
- E_{max} of the virtual photon spectrum ~ 20 MeV
- C and empty target measurements (to subtract nuclear contribution and background)

Layout of the experimental facilities at GSI

R³B - Reactions with Relativistic Radioactive Beams

~100 - ~1000 AMeV

From: R³B Technical Report

Summary

- n-induced reactions are important for nucleosynthesis beyond iron
- s-process can be used as a tool to constrain stellar parameters, if the corresponding reaction rates are known
- we are now close to measure n-induced cross section at stellar energies on radioactive nuclei on a routinely basis
- So far almost all measurements are done on stable nuclei