WE-Heraeus Summer School on Nuclear Astrophysics in the Cosmos

Exotic nuclei

Christoph Scheidenberger GSI Darmstadt

Christoph Scheidenberger, GSI and University Gießen

Overview

Part 1: What are exotic nuclei? Why study? Key questions

Part 2: Production and separation of exotic nuclei in the laboratory

Part 3: Examples: halo nuclei, 2-proton radioactivity, superheavy elements

Part 4: Exotic nuclei in nuclear astrophysics

Part 5: Future opportunities at FAIR

1. Introduction

Pioneering work using mass spectrometry

Discovery of isotopes

J. J. Thomson (1913)

High-resolution mass-spectrographs

F. W. Aston (~1915...1925)

- * identification of 212 isotopes
- * systematics:
 - \rightarrow "packing fraction"

Development of nuclear models

Discovery of mass excess:

Masses deviate from whole numbers

First (collective) model:

Liquid-drop model by C.F.v.Weizsäcker, H. A. Bethe (1935/36)

Chart of (stable) nuclei

Shell effect in stable nuclei

Number of stable isotopes/isotones

---> magic numbers

Development of nuclear models (II)

Single-particle shell model (1949):

Individual properties:

e.g.: excitation energies, magnetic moments

based on Schrödinger equation:

$$H = \sum_{i} \left[-\left(\frac{\hbar}{2m}\right) \cdot \Delta_{ii} \right] + \sum_{i < j} V_{ij}$$

Christoph Scheidenberger, GSI and University Gießen

Chart of (known) nuclei

Nuclear radii do not increase as A^{1/3}

1) Nuclear Radius:

Textbooks say: R
$$\approx$$
 1,3 fm * A₀^{1/3}

Magic numbers depend on N and Z

2) Magic numbers:

According to standard textbooks:

2,8,20,28,50,82,126

New and unexpected "exotic" phenomena

Neutron halo in nuclei

Christoph Scheidenberger, GSI and University Gießen

Exotic places where they are produced

Nov. 1986

26.Feb.1987

SN1987A

Christoph Scheidenberger, GSI and University Gießen

What is the meaning of "exotic"

exotic places

exotic composition

exotic properties

→ sufficiently many reasons to study exotic nuclei!

Key questions

General questions:

Limits of stability, heaviest elements

Understanding of nuclear forces, isospin dependence

Magicity and shells far-off stability

New phenomena and new decay modes

Nucleosynthesis and elemental abundances

Properties of nuclei:

"Weight" (mass excess)

"Size" (matter and charge radii)

"Shape" (deformation)

Half-life, decay modes

Electrical and magnetic moments, spins

Single-particle structure

Collective phenomena (giant dipole resonance)

Challenge: understand solar system element and mass abundances

Where, when and how are the elements produced?

Understand the observed distribution, qualitatively and quantitatively!

Why no elements Z>92, why no masses A>240?

Observational data

Hubble Space Telescope

Apache Point

E.g., discover and understand the formation of the first stars and galaxies, chemical evolution of galaxies, measure the geometry of the Universe and the distribution of (dark) matter, investigate the evolution of galaxies and the production of elements by stars, and the process of star and planet formation

Cowan et al., NIC-9 proceedings

Element synthesis processes

- Big Bang Nucleosynthesis
- pp-chain
- CNO cycle
- Helium, C, O, Ne, Si burning
- s-process
- r-process
- rp-process
- vp process
- p process
- α process
- fission recycling
- Cosmic ray spallation
- pyconuclear fusion
- + others

Radioactive ("exotic") nuclei

Our telescopes in nuclear physics

We can look into the interior of stars!

Christoph Scheidenberger, GSI and University Gießen

2. Production

Fragmentation, spallation

Coulomb dissociation, fission

Compound nuclei, fusion

Christoph Scheidenberger, GSI and University Gießen

Production reactions

Technical concepts to produce exotic nuclei

Christoph Scheidenberger, GSI and University Gießen

World view of radioactive-beam facilities

Christoph Scheidenberger, GSI and University Gießen

The exotic beam facilities at GSI

Production of exotic nuclei by projectile fragmentation

Produktionsraten: 10⁵/sek. ... 10⁻⁵/sek. (≈1/Tag) Spallation and fission of uranium

Nucleo"synthesis" by spallation of cosmic rays

Big-RIPS in RIKEN (Japan, near Tokyo)

Separation principle: $B\rho$ - ΔE - $B\rho$ method

Separation principle: $B\rho$ - ΔE - $B\rho$ method

The FRS at GSI

Separation and identification at the FRS

Experimental area at the Fragment Separator FRS

Identification and experiments with few atoms per week

In-flight identification (Bq, TOF, ΔE)

¹²⁹Xe (1095 AMeV) + ⁹Be

ISOL target and ion source

Christoph Scheidenberger, GSI and University Gießen

Ionisation mechanisms

Nuclear chart @ CERN-ISOLDE

Christoph Scheidenberger, GSI and University Gießen

3a. Superheavy elements

Superheavy elements

Gottfried Münzenberg und Matthias Schädel "Moderne Alchemie – Die Jagd nach den schwersten Elementen

Key questions:

- where are the upper limits of the periodic table of elements?
- why do SHE exist?
- where is the next proton magic number?
- what atomic and nuclear properties do they have?

- Officially named in 2009 by IUPAC
- "The idea was to go backwards, to honor someone who was not greatly honored in his lifetime." – Sigurd Hofmann
- Hofmann wanted to highlight the contribution of nuclear chemistry to other fields, astrophysics in particular
- Element was first produced at GSI in 1996 by fusion of zinc and lead

S. Hofmann et al., Z. Phys. A354, 229-230 (1996)

Christoph Scheidenberger, GSI and University Gießen

Synthesis and identification of SHE at SHIP

Status of worldwide SHE research

Background: calculated shell correction energies E_{shell} of SHE

The inner electrons move at relativistic speed in the strong electric field of the high-Z nucleus:

v/c ~ Z α ~ 100/137 $\rightarrow \beta$ ~ 0,7 example 106Sg: $\beta = 0,77$

Glenn Seaborg during his visit to GSI

- $\gamma = 1,58$ r = 0,63 r₀
- \rightarrow s,p-electrons are attracted closer to the nucleus
- \rightarrow spin-orbit splitting
- \rightarrow high electron-density near nuclear surface
- \rightarrow screening of nuc.charge for outer (d,f) electrons

Chemistry of Transactinides

- \rightarrow electron configuration, ionic radii, binding energies
- \rightarrow chemical properties (redox potential, volatility,

complex formation, periodicity of chem.properties,...)

Theory predictions: relativistic vs. non-relativistic calculations

CONSEQUENCES

- ★ Shift of energetic and spacial distribution of electronic orbital on an absolute and relative scale
- Change of electronic ground state configurations and the ionization energies
- ➡ Change of atomic- and ionic radii
- Change of availability of electronic orbitals for chemical bonding
- → Change of bonding energies in molecular bonds
- Change of contribution of ionic- and covalent part in the bonding

Confirmation by chemistry

determination of the chemical Properties of Hassium

Christoph Scheidenberger, GSI and University Gießen

Hot fusion advances the field

Future perspectives

3b. 2-proton radioactivity

Discovery of a new type of radioactivity

- Production of nuclei at the proton dripline
- Study of the 2-proton emitter ⁴⁵Fe

Emission of two protons from nuclear states

Author	Q _{2p} [MeV]	Τ _{1/2} [μs]
Brown	1.15 ±0.09	2 - 300
Ormand	1.28 ±0.18	0.01 - 100
Cole	1.22 ±0.05	-

Christoph Scheidenberger, GSI a MuRfütznerset al. Eur. Phys. J. A 14 (2002) 279

Experiment at the FRS

M. Pfützner et al. Eur. Phys. J. A14 (2002) 279

Christoph Scheidenberger, GSI and University Gießen

Identification of ⁴⁵Fe

2115 events in 8117 min. (5.6 d) 6 events ⁴⁵Fe

M. Pfützner et al., Eur. Phys. J. A 14 (2002) 279

The ⁴⁵Fe experiment at GANIL

Results from GANIL experiment

Decay energies

2p-decay of ⁴⁵Fe in a 3-body model

3c. Halo nuclei

Halo nuclei

- Radii measurements
- Momentum measurements
- Complete kinematic measurements

Halo nuclei

Examples and simple imagination

Borromean rings – Borromean nuclei (sign of an Italien noble family)

Discovery of halo phenomenon: absorption measurements

I. Tanihata et al., PRL 55 (1985) 2676

I. Tanihata et al., PRL 55 (1985) 2676, PLB 206 (1988) 592 B. Blank et al., Z. Phys. A 343 (1992) 375c

Radial density distributions

¹¹Li g.s. Density 1 Protons rms:2.29fm Neutrons rms:3.63fm 0.01 Neutrons 0.0001 rho(r) [1/fm^3] 1e-006 2n-Halo Protons 1e-008 le-010 le-012 1e-014 10 15 5 0 20 Radius r [fm]

ground state densities :

g.s. densities
$$\times r^2$$
:

Theory: H. Lenske

Spectroscopy by one-nucleon knockout reactions

Transformation of wave function to momentum space

Relation of space and momentum is given by Heisenberg's uncertainty principle: $\Delta p \cdot \Delta x \approx \hbar$

 $4\pi r^2 \rho$ (r) (1/fm³) 0 1 0 1 - 01 1 - 01 1 - 01 1 = 21 = 0Fourier transformation 7.5 200 -20015 0 p_{\parallel} (MeV/c) r (fm) Extended Narrow Wavefunction Momentum Distribution

Christoph Scheidenberger, GSI and University Gießen

Momentum distributions of carbon isotopes

Christoph Scheidenberger, GSI and University Gießen

Exotic nuclei

longitudinal momentum p_{\parallel} (MeV/c)

W. Schwab et al., Z. Phys. A350 (1995) 283
Discovery of a proton-halo nucleus: 8B

When/where do halos form?

Small nucleon separation energy \rightarrow close to drip-lines

Low orbital angular momentum (I=0,2)

Asymptotic form of wave function: $\Psi(r) \sim \exp[-(2 \cdot \mu \cdot S_{2n})^{1/2} \cdot r/\hbar]$

Fig. 4. The dependence of the wavefunction tail of a particle bound inside a square well potential on separation energy (the distance from the top of the well).

see P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987)

Kinematical complete experiments

Energy and angular correlations

⁵H obtained in proton knockout: ⁶He \rightarrow p + ³H + n + n

Measured correlations are consistent with a 3-body microscopic calculation assuming $J^{\pi}=1/2^+$

Measured three-body correlations (projections of energy and angle) are analyzed via a Jacobi coordinate system and an expansion with a restricted set of hyperspherical harmonics:

 → angle between relative momenta θ_{nn}
 → energy sharing ε=E_{nn}/E_{total} between sub-systems

 \rightarrow spin and parity of the state

Christoph Scheidenberger, GSI and University Gießen

Total interaction cross sections measured at 950 MeV/u $^{A}Na \rightarrow C$

T. Suzuki et al., Phys. Rev. Lett. 75 (1995) 3241

Exotic nuclei

20

16

Stable, skin and halo nuclei

Terra incognita: lithium isotopes beyond the drip-line

~300 MeV/u ¹¹Li,¹⁴Be + liq.H₂ \rightarrow ⁹Li+n, ¹¹Li+n, ¹¹Li+2n

Newly observed ¹²Li and ¹³Li

Christoph Scheidenberger, GSI and University Gießen

4. Some links to nuclear astrophysics

Challenge: understand solar system element and mass abundances

Where, when and how are the elements produced?

Understand the observed distribution, qualitatively and quantitatively!

Why no elements Z>92, why no masses A>240?

Formation of heavy elements by s- and r-process

- s-process terminates at ²⁰⁹Bi
- r-process produces the heaviest elements (Th, U)
- p-process produces ~30 n-deficient isotopes, which cannot be formed by s- or r-process

 $N_A \propto \frac{1}{\langle \sigma \rangle_A} \iff {\mbox{small}} {\mbox{small}} {\mbox{vice}} {\mb$

small n-capture cross sections lead to large abundances and vice versa

- Temperature-averaged n-capture cross sections needed!
- Near stability

Christoph Scheidenberger, GSI and University Gießen

beta-decay to bound final states

Bound-state beta decay of ²⁰⁷TI⁸¹⁺

Christoph Scheidenberger, GSI and University Gießen

r-process

Assumption: $(n,\gamma) \leftrightarrow (\gamma,n)$ rate equilibrium

$$\lambda_{\gamma n} \propto \frac{T^{3/2}}{N_n} \exp\left(-\frac{Q_n}{kT}\right) \cdot \lambda_{n\gamma}$$

Example:
$$N_n = 10^{24} / \text{cm}^3$$
, $T_9 = 1$
 $\rightarrow Q_n = 2 \text{ MeV}$

Neutron capture processes stall, and nucleus "waits" for β -decay:

$$_{Z}X \rightarrow _{Z+1}X + e^{-} + v_{e}$$

 \rightarrow for every element, there is a so-called "waiting point"

 \rightarrow r-process path determined by mass differences

 \rightarrow abundances determined by half-lives

Are the fine details a reflection of the stellar site or of nuclear physics input?

- Nuclei far-off stability may show different phenomena than nuclei close to stability (magic numbers, shell quenching)
- Extrapolation of mass models to regions far from stability may introduce errors

Storage-ring mass spectrometry at FRS-ESR

Christoph Scheidenberger, GSI and University Gießen

Mass Measurements at the Ring Branch

5. Future opportunities at FAIR

FAIR – International Facility for Antiproton and Ion Research

Super-conducting FRS

Comparison of FRS with Super-FRS

					gain factor	
	$B\rho_{max}$	∆p/p	$\Delta \Phi_{x}, \Delta \Phi_{y}$	power	¹⁹ C	¹³² Sn
FRS	18 Tm	1.0 %	±13, ±13 mrad	1500	1	1
Super-FRS	20 Tm	2.5 %	±40, ±20 mrad	1500	5	10
				including primary rate	250	20 000

Challenges and future opportunities

Rate estimates

Thank you for attention !

Enjoy the school and the NIC conference!

Christoph Scheidenberger, GSI and University Gießen

End