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1. Introduction

Jet quenching has been discovered in heavy-ion collisibigBN&'s Relativistic Heavy lon
Collider (RHIC). In this context, very exciting jet-assatgdd particle correlations [2] have been
observed, which indicates the formation of shock waves énfthm of Mach cones [3], induced
by supersonic partons moving through the quark-gluon pa€pGP). Measuring the Mach cone
angle could give us the possibility to extract the equatibstate of the QGP.

Shock waves can only develop in a medium which behaves likéda fThe large elliptic flow
coefficientv, measured at RHIC [4] implies that the QGP created could beadynperfect fluid
with a small viscosity. Calculations of viscous hydrodynes5] and microscopic transport theory
[6] have estimated the shear viscosity to the entropy dereiio ) /sto be less than 0.4. There is
still an open question if this upper limit of thg/sratio is small enough to allow the formation of
Mach shocks.

In this work we address the question, whether and when vistiti shock waves and Mach
cones can develop in viscous gluon matter for givefs values. For this purpose we consider
first the relativistic Riemann problem [7], which we solvethim the kinetic theory and the Israel-
Stewart (IS) theory of viscous hydrodynamics for comparisblere we employ the microscopic
parton cascade BAMPS (Boltzmann Approach of MultiPartoat®cings) [8] and a solver of the
IS equations, VSHASTA (viscous SHArp and Smooth Transpégbrkhm) [9]. Particularly, we
demonstrate agreement between the two approaches for wétieglextreme) smalh /s values
and also show deviations when thé¢s ratio becomes large, which implies the invalidity of the IS
theory. Second, we consider a traverse of a high-energynghrough gluon matter and investigate
the formation of shocks in form of Mach cones. Preliminagults are obtained by using BAMPS.

2. BAMPS and vSHASTA
BAMPS is a microscopic transport model solving the Boltzmaguation

puall f (Xa p) = C(Xa p) (21)

for on-shell particles with the collision integr@l(x, p). The algorithm for collisions is based on
the stochastic interpretation of the transition rate [8]tHis study, we consider only binary gluon
scattering processes with an isotropic cross section,hwikiadjusted locally at each time step to
keep a constan /svalue [10, 11].

VSHASTA solves the IS equations of dissipative hydrodymanior shear pressure and heat
flow. In 1+1 dimensions the relaxation equations for heataotivity and shear stress are

1

Dg* = — (s ) g~ e~ g3 (2.2)
q
1

D= T—(TINS— 7'l')—|;—,1—|7-[2—|;-,37 (23)
T

whereiys and o g are the Navier-Stokes values [9] aBd= u#d,. T4 and 1 are the relaxation
times, respectively. The termé andly are explicitly given in [9]. For vanishing shear pressure
and heat conductivity the IS equations reduce to the equeatibideal hydrodynamics.
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3. Therelativistic Riemann problem

The relativistic Riemann problem [7, 10] is a well-known skaube problem in ideal hydro-
dynamics. For a perfect fluid, i.e},/s= 0, we observe (the green curve in Fig. 1) in longitudinal
directionz a propagation of a shock wave to the right with a larger vifdbian the speed of sound
and a rarefaction wave to the left exactly with the speed ahda@s = 1/1/3, wheree = 3P. In
transverse direction the problem is homogeneous.
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Figure 1: Spatial profile of pressure (left panel, normalized by thigahvalue P ) and collective velocity
(right panel) at = 3.2fm/c. Initially matter is separated in two regioms < 0 andzg > 0, with two different
pressure® = 5.428 GeV/fm? andPr = 0.339 GeV/fm?3.

The BAMPS solutions for varioug /s are depicted in Fig. 1. In particular, the BAMPS result
for n/s=0.001 reproduces the ideal solution for a perfect fluid to a Vg precision. With the
increasingn /s value we see a clear transition from the formation of shockesan ideal fluid to
the smearing out in free streaming of particles [10]. Theaatiaristic shock profiles disappear for
largen /s values.
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Figure 2: Comparison of BAMPS and vSHASTA for the shear pressuaad heat flowg?.

In Fig. 2 we show comparisions between BAMPS and vSHASTAlierdhear pressume=
%/y? and heat flowg? = hy?(VN° — N3) att = 3.2fm/c. "V is the shear stress tensbi* is the
particle four-flow,y? = (1—v?)~L andh = (e+P)/nis the enthalpy per particle. Fgr/s=0.01 we
see a very good agreement between vSHASTA and BAMPS, whineggs = 0.1 deviations in
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the region of the shock front and rare faction fan appeahércase of) /s= 0.1, the local system
at the shock front and rare faction fan is strongly out of Eopiiim and, thus, the applicability
of the IS theory is questionable. The microscopic transppgroach does not suffer from this
drawback.

4. Mach Conesin BAMPS

Formation of 3-dimensional shock waves in form of Mach coseavestigated by shooting
a gluon with energy of 20GeV into a thermal gluon medium witeraperature ol = 400 MeV.
The thermal medium is embedded in a static box.
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Figure3: Spatial profile of the energy density (left panel) and theewry field (right panel). The /svalue
of the thermal medium is/4r. The initial velocity of the high-energy gluon is in z-ditem. The length of
the arrays in the right panel is unit, i.e., only the directid the velocity is shown.

Fig. 3 shows spatial profiles of the energy density and vsldald att = 2.5fm/c for a
medium withn /s= 1/4m. The energy, which the gluon probe lost due to interactioib the
medium, creates a shock wave that propagates in form of a Btawd The energy density of the
region behind the Mach cone is smaller than the initial endensity of the medium. This region
is called a diffusion wake. Collective behavior of the maditesponse is also clearly seen in the
profile of the velocity field. Our results agree qualitatwelith those found in [12].

For higher values of thg /s ratio the typical Mach cone structure smears out as obsénved
Fig. 4. The strength of the Mach cone signal and also the lewergy density region behind the
shock front become weaker because of weaker particle otiens in medium with largen /s.
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Figure4: Same as Fig. 3, but far/s= 1/ (left panel) and D (right panel).
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