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We discuss an effective chiral SU(3) model that includesdwad as well as quark degrees of
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1. Hadronic Modédl

There are a number of effective hadronic flavor-SU(3) models thatriie matter properties
around the nuclear ground state quite well (e.g. [1] and referenaesrtheéV/arious extended quark
model approaches have been developed in the recent years fordi@tthe high temperature or
density regime and the deconfinement phase transition [2, 3]. To investigattiral and decon-
finement phase transitions, where hadrons and quarks are invohgenh aerder to have a coherent
eqguation of state that covers the whole range of chemical potentials andr&tanps relevant for
ultrarelativistic heavy-ion collisions a combined hadron-quark model earesas a very useful
approach to this problem. In the following we outline such a hadron-quaankalism.

To ensure that the model has a reasonable behavior at low densitiesvaibeiperatures
we adopt a well-tested extended flavor SUB) w model as basis for the description of the
hadronic system. As hadronic degrees of freedom we include the |d®agginic and mesonic
SU(3) multiplets.

The Lagrange density of our extended non-lingar o model reads:

L = Lkin + Lint + Lselr+ Lss, (1.1)

with the kinetic energy ternigin. Lseir and Lsg (assuming, for simplicity, isospin-symmetric
matter) are given by
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Lself = fé(nﬁ)w2++m§,(p2) — 04 <w4+4+3a)2q02+ NG + 7 )
+ Iko(07 422 k(0?4 222~k 14+z4 — k302 — k4 n2% (1.2)
2 1 2 2 3 O_gzo, .
Lsg= —M&fr0 — (xfzmifk— émﬁrfo 7, (1.3)

wherew and ¢ are the zeroth components of the isoscalar non-strange and stratgefiedds,
respectively.o and{ are the corresponding scalar fieldsse s includes mass terms and quartic
self-interactions of the vector mesons, as well as the self-interaction® afcdlar mesons that
induce the spontaneous breaking of chiral symmetry. The explicit chimatretry breaking is
implemented through the terhyg (for extended details on the full Lagrangian see [1]).

The interactions between baryons and the scalar and vector mesongareatid read

Lonm=— U (G0 +0Gi{) ¥, Lov = Ui (GVow+Gigho®) i , (1.4)

The indexi sums over the baryon octet. Vacuum and in-medium masses of the bargayenar-
ated via their couplings to the scalar condensates.

For the baryon-vector couplingf, andg;, pure f-type coupling is assumed as discussed in
[1], G = (Ny—nip)gY , Gig = —(n—nk)v/2gY , wheregy denotes the vector coupling of the baryon
octet andh' the number of constituent quarks of spediesa given hadron. The relative couplings
are in accordance with additive quark model constraints.
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The parameters of the purely hadronic model are fixed by symmetry relatiadsonic vac-
uum observables and nuclear matter saturation properties (see [1ddditon, the model also
provides a satisfactory description of realistic finite-size and/or isospimmagtric systems like
nuclei and neutron stars [4, 5].

2. Implementing Quarks

For a realistic description of the system at high temperatures and densitiesadeice quark
fields into our model following the general approach outlined in [2, 3].

The quarks couple to the mean fields of the model. As order parameter fde¢bafinement
transition we introduce an effective Polyakov loop fidldnd its conjugate™* with a potential for
the field reading [3]:

1
U = —a(T)®®" +b(T)In[1— 600" + 4(P3D*3) — 3(PD*)?] (2.1)
wherea(T) = agT#+ a1 ToT3 + & TZT2, b(T) = bsTST. The parameters are fitted to lattice QCD

results at zero chemical potential.
The Polyakov loop couples to the quarks via their partition functions:

_ Y 3 B —ui
Qq= Ti; (2n)3/d Kin <1+Cbexp - > 2.2)
and
— v [ caxpEl TH
Qq=-T 3 (Zn)g/d kin <1+CD exp—— > 2.3)

Quark contributions in the confined phase wdth= 0 are thus suppressed. In order to ensure that
hadronic degrees of freedom vanish at high temperatures we includigeavfilume correctiow

for the hadronsy= 1fmq) extending the thermodynamically consistent approach discussed in e.g.
[6]. Thus we get

Vouark = 0, VBaryon=V, VMeson= v/8 (2.4)

assuming, for simplicity, a meson radius of half the size of the effectiveobargdius. At this
stage we do not include more subtle effects in the description of the exchatietde effects like
possible Lorentz contractions or temperature-dependent effectsAfr]alternative approach to
suppress hadrons at high temperatures and densities by generating ahifiafor the hadronic
particles at non-zero values @fis discussed in ref. [8].

Using a modified chemical potentigi for particlei, fj = i —v; P, whereP is the total
pressure, and by correcting all energy, particle, and entropy den@ti@ ands) by the volume

exclusion factor:
!

f=‘§=<l+lzvipi>-1 (2.5)

one obtains a consistent set of equations.
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Figure 1: Scalar condensate and Polyakov loop as function of temperabmpared to lattice results [10].
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Figure 2: Interaction measure as function of temperature compardattioe results using different time
slices and effective actions[10].

3. Results

Solving for the fields by extremizing the grand canonical potential in me#hdjgroxima-
tion including thermal mesons we determine particle densities and thermodynapmcdities as
function of temperature and chemical potential [9]. The plots show resultshishing chemical
potential. Finite-density results will be presented in forthcoming publicatioig. 1Fshows the
temperature dependence of the scalar condensate and the Polyakokefmregenting the chiral
restoration and deconfinement transitions. The critical temperature in thel mdd = 175MeV,
defined as maximum in the change of the scalar condensate during theoeeogzhase transi-
tion. The curves are in qualitative agreement with lattice gauge results aism s the plot [10]
Through the effective potential for the Polyakov loop also the gluonitritartions to energy den-
sity and pressure are included. In Fig. 2 the so-called interaction meiaspicted, defined as
deviation of the thermodynamical quantities from an ideal gas behésie3p)/T4. The model
shows the same behavior as the lattice results, with a peak in the interactiorrengasaly above
Te. The resulting hadronic and quark densities are plotted in Fig. 3. Aroundctitical” T, a
mixture of hadrons and quarks can be observed, which is quite realigtic tfie smooth behavior
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Figure 3: Particle number densities ov&P for different particle species as function Bf The solid line
shows the total number density of quarks and antiquarks.dokted line refers to the total meson density
and the dashed line to the number density of baryons andsaydibs.

of the phase transition and the still quite low value of the Polyakov loop field indlgime as also
observed on the lattice. At higher temperatures the system is dominatedrg gegy fast.

We have developed a unified hadron-quark model and studied its thenanody properties
at zero density. The comparison with lattice results shows reasonablkeagre Work on the
model calculations for finite chemical potential and the implementation of the egutstate in
hydrodynamic simulations of heavy-ion collisions are in progress.
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