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1. In memory of S.N. Vernov

Figure 1: Sergey Nikolaevich Vernov, 1910-1982.

In 2010 the nuclear science community celebrates the 100th anniversary of Sergey Nikolaevich
Vernov (1910-1982), prominent Russian scientist, one of the world’s pioneers in cosmic ray studies.
His name is known for groundbreaking results in cosmic ray science and accompanying research in
elementary particle physics, space plasma phenomena, astrophysics and geophysics. S.N. Vernov
was one of the founders and former director of the Skobeltsyn Institute of Nuclear Physics of the
Lomonosov Moscow State University [1].

It’s impossible to exaggerate the contribution of S.N. Vernov to the studies of high energy
cosmic rays. Here we mention only the results related to the title of the Talk. At the end of 1950’s
a unique Extensive Air Shower (EAS) array have been built under supervision of S.N. Vernov at
Lomonosov Moscow State University. EAS MSU array was designed to detect and analyze ex-
tensive air showers induced by primary particles with energies 1014–1017 eV and includes ground
detectors of different type. In 1958 Kulikov and Khristiansen have discovered the knee in the cos-
mic ray spectrum at energies about 3 ·1015 eV based on the measurements of MSU EAS array [2].
In 1963 S.N Vernov proposed to build large scale array to study the properties of the highest energy
part of cosmic ray spectrum E > 1017 eV. Yakutsk EAS Array is built in 1973 using experimental
facilities of Skobeltsyn Institute of Nuclear Physics under general supervision of S.N. Vernov [3].
The expertise of Skobeltsyn Institute experimental group allowed to synchronously use scintilla-
tor, muon and Cherenkov detectors in one setup which predetermined long-term success of the
experiment.

Yakutsk Array is the first experiment capable to target all aspects of ultra-high energy cosmic
ray (UHECR) physics. Yakutsk Array is designed ahead of it’s time and still competitive today,
although size advantage of new setups [4].
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2. UHECR experiments today

In the Talk we define ultra-high energy cosmic rays (UHECR) as cosmic rays having energies
above 1018 eV. Two techniques are widely used for UHECR detection: surface detector array and
fluorescence telescope. The latter operates on moonless nights and detects fluorescence of nitro-
gen atoms excited by charged particles of the shower core. Surface array register particles at the
periphery of the shower and operate continuously. The fact that these two techniques are focused
on different part of the shower enables hybrid technique based on simultaneous detection of the
shower by the surface array and by fluorescent telescopes. In Table 1 we briefly overlook ongoing
and recently finished UHECR experiments without goal of historical completeness, for more de-
tails please refer to [5, 6]. The latest experiments Pierre Auger observatory and Telescope Array
benefit from the high accuracy of hybrid technique and at the same time from the large exposure of
surface detector array. The measurements of surface detector are verified and energy is calibrated
using hybrid events subset in these experiments [12, 13].

Experiment Dates Location SD area, Number Ref.
km2 of FDs

Yakutsk Array 1973 - now Yakutsk, Russia 18 - [7]
AGASA 1990 - 2004 Akeno, Japan 100 - [8]
HiRes 1998 - 2006 Dougway, Utah, USA - 2 [9]
Pierre Auger Observatory 2004 - now Malargue, Argentina 3000 4 [10]
Telescope Array 2008 - now Delta, Utah, USA 700 3 [11]

Table 1: UHECR experiments discussed in this Talk. Operation dates, site location, surface detector area
and number of fluorescent detectors are given.

3. Spectrum and GZK cut-off

In the highest energy region two spectrum features are theoretically predicted. First is Greisen-
Zatsepin-Kuzmin cut-off [14, 15] at E & 1019.7 eV due to proton interaction with cosmic microwave
background (CMB) photons

p+ γ2.7K → n+π
+ (3.1)

→ p+π
0 .

Second feature is a dip at E ∼ 1019 eV due to e+e− pair production on CMB background [16]

p+ γ2.7K → p+ e+ + e− . (3.2)

A dip is observed in spectra measured by Yakutsk, AGASA, HiRes, Auger [17] and Telescope
Array [13] while the situation with a GZK cut-off have been controversial until recently. A spec-
trum measured by AGASA experiment doesn’t show a cut-off [18]. There are 11 AGASA events
with E > 1020 eV while 1.9 events are expected in the uniform sources model. HiRes experiment
observed a cut-off in the spectrum with 5σ significance [19]. Pierre Auger Observatory confirmed
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a spectrum suppression at high energies with 20σ significance [12, 20]. Recently Telescope Array
experiment confirmed a cut-off with significance of 3.5σ in surface detector based spectrum [13].
The latter is important since Telescope Array has very similar surface detectors with AGASA1.

Today the cut-off predicted by Greisen, Zatsepin and Kuzmin is observed in 3 independent
experiments. On the other hand cut-off observation is not a direct proof that the process in Eq. 3.1
really takes place. The cut-off in the spectrum may be generated by sources exhaustion or in case
of primary nuclei by photodisintegration. The process in Eq. 3.1 if confirmed would be the high-
est energy known process and would provide a test for Lorentz-invariance and other fundamental
principles of physics. To confirm the GZK process one should unambiguously determine primary
composition of UHECR and observe secondary photons, produced in decays of π0.

4. Primary composition

To determine primary composition several observables should be measured simultaneously:
one so called E-observable to reconstruct primary energy and C-observable sensitive to primary
particle type [21]. For surface detector E-observable is signal density at the fixed distance from the
core and for C-observable depending on the detector one may use either muon density or character-
istics of shower front (e.g. front curvature or rise time). In fluorescent method E-observable is an
intensity of fluorescence signal at the shower maximum while the depth of the shower maximum
Xmax may serve as C-observable.

Surface detector technique. Pierre Auger Observatory compared shower attenuation curves
in data and simulations and concluded that there is an excess of muons in data [22] compared to
to simulations with QGSJET II [23] and SIBYLL 2.1 [24] hadronic interaction models for both
proton and iron primaries. At that time Pierre Auger Observatory didn’t have muon detectors and
therefore estimation of muon density is indirect.

Yakutsk array is equipped with muon detectors and measures muon density directly. The
muon excess comparing to the model have been reported [25, 26]. It was shown that measured
muon density for E > 1019 eV showers is factor 1.5 higher than SIBYLL 2.1 [24] model pre-
diction for iron primary and may be interpreted using EPOS model [27] with mixed proton and
iron composition [28]. Yakutsk muon data suggest that composition become heavier at energies
E & 1019 eV [29].

In EPOS model more muons are produced comparing to the other models as a result of the
enhanced production of baryons in highest energy interactions. Composition measurements with
a muon technique strongly depend on the interaction model and therefore have an uncertainty. On
the other hand if the primary composition is known muon density at the ground will be extremely
useful for understanding the hadronic interactions.

Fluorescence technique. In 2010 both HiRes and Pierre Auger collaborations published
measurements of the depth of the shower maximum (Xmax) and the width of the Xmax distri-
bution [30, 31]. HiRes results are based on stereo technique and lead to a conclusion of proton
dominance in the composition in the wide energy range E ∈ [2 · 1018,5 · 1019] eV [30]. Pierre
Auger results are based on a hybrid technique and suggest heavy composition at energies above

1The only difference is a width of scintillator: 5 cm for AGASA and 1.2 cm for TA.
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1019 eV [31]. This dichotomy is a puzzle to be resolved by future measurements and interpreta-
tions. Furthermore possible difference of northern and southern UHECR skies is not excluded.

There exists alternative interpretation of Pierre Auger Xmax data. Both measured Xmax and
width of it’s distribution may be explained by proton primaries assuming increase of proton-air
cross-section at high energy comparing to presently used in the models [32]. The hadronic cross-
section used in the hadronic models at the energy region of interest is a result of extrapolation and
is generally unknown. This illustrates model dependence of composition studies with fluorescent
technique. It should be noted that above interpretation of Pierre Auger results doesn’t help to
resolve the difference with HiRes results.

Recently reported preliminary Telescope Array results on Xmax are consistent with proton
composition [33]. The result is based on first 34 months of stereo observation and therefore the
statistics is not yet high enough to estimate the width of Xmax distribution.

5. Search for sources

Active galactic nuclei (AGN) are the most natural candidates for point sources of UHECR [34].
It have been shown that black hole in the center of AGN is capable to accelerate protons up to
energies 1020 eV [35].

A correlations of HiRes events detected in stereo mode with BL Lac type objects (subclass of
AGN) have been found at E > 1019 eV [36, 37]. The fraction of correlating events is 3% and the
correlation angular scale is less than 1◦ which is significantly smaller than the expected deflection
of protons in cosmic magnetic fields. This suggests that some fraction of the UHECRs are neutral
(see Ref. [38] for a particular mechanism).

In November 2007 Pierre Auger observatory claimed correlation of the UHECR with nearby
(< 71 Mpc) active galactic nuclei [39]. 9 of 13 events with energies above 5.7 · 1019 eV correlate
with corresponding AGNs within 3.1◦ with 2.7 background events.

HiRes collaboration have tested the Auger hypothesis in the northern sky and have seen no
correlations in the data: 2 of 13 events correlate with expectation of 3 background events [40].
Shortly after Pierre Auger paper a comment appeared [41] (see [42] for extended version) with two
main points:

• Events in Pierre Auger dataset do not follow the prediction of AGN hypothesis. E.g. nothing
comes from Virgo, while it contains a significant fraction of nearby AGNs.

• A nearest radiogalaxy Cen A may be a single source with correlation angle about 20◦.

Later it was noted that the AGNs correlating with Pierre Auger events are not strong enough to ac-
celerate protons to observed energies, while heavier nuclei would be deflected by Galactic magnetic
field spoiling the correlations [43, 44].

The dataset collected by Pierre Auger after the initial publication didn’t confirm previous
claim: 12 of 42 events correlate when expected background is 8.9 [45]. On the contrary, the
hypothesis of Cen A was strengthened with a new data [45].

Telescope Array experiment operating in the northern hemisphere doesn’t see the correlations
with AGNs in preliminary data: 5 of 15 events correlate with background 3.6 [46]. It should be
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Figure 2: Limits (95% CL) on the fraction (left) and flux (right) of primary gamma rays in the integral
flux of cosmic particles with E0 > Emin from: hybrid events of the Pierre Auger Observatory (PAO-H) [57];
the surface detector of the Pierre Auger Observatory (PAO-SD) [56]; Yakutsk (Y) [52, 53]; reanalysis of the
AGASA (AH) [54] and AGASA and Yakutsk (AY) [55] data; AGASA (A) [51] and Haverah Park (HP) [50].

noted that northern sky contains less AGNs than southern and the objects are different, e.g. Cen A
may not be seen by HiRes and Telescope Array.

6. Search for neutral component

UHECR photons are produced by energetic protons and nuclei in their interactions both at
acceleration sites and along their trajectories towards the Earth [34]. Both protons and heavier
nuclei with energies E ∼ 1020 eV interact with cosmic background radiations, especially with CMB
and infrared background (IRB) radiation. The processes involved in these interactions are however
very different. Interactions of a proton at E & 7× 1019 eV with CMB photons lead to efficient
pion production [14, 15], Eq. 3.1. Further decays of neutral pions produced in these interactions
lead to a secondary photon flux at energies E & 1018 eV (so-called GZK photons) [47, 48]. On
the other hand, the dominant interaction channel for heavier nuclei is their photodisintegration
on IRB photons; the secondary photon flux is much smaller in this case [49]. Therefore, the
photon flux at E & 1018 eV may provide an independent test of the chemical composition of CRs
at E ∼ (1019 . . .1020) eV.

Several limits on the UHE photon flux have been set by independent experiments (see
Fig. 2), including Haverah Park [50], AGASA [51], Yakutsk [52, 53] (see also reanalyses of the
AGASA [54] and AGASA+Yakutsk [55] data at the highest energies), the Pierre Auger Obser-
vatory [56, 57] and preliminary result from Telescope Array [58]. Still no evidence for primary
photons found at present.

The study of UHE photons is a powerful tool for constraining new physics models. One exam-
ple is provided by models with superheavy dark-matter (SHDM) particles (e.g. [59]); a substantial
fraction of the SHDM decay products are photons. Another class of exotic relics to be searched
for with CRs is topological defects [60, 61]; UHE photons were suggested [62] as their signa-
ture. Moreover results of the photon search severely constrain the parameters of Lorentz invariance
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violation at Planck scale [63, 64, 65]. Existing photon flux limits are quickly approaching the pre-
dicted flux of GZK photons, e.g. Pierre Auger limit above 1019 eV[56] is only twice higher than
optimistic expectation of GZK photon flux. With the growth of statistics collected by Pierre Auger
and Telescope Array experiments one may expect detection of the ultra-high energy photons in the
medium-term.

Ultra-high energy neutrinos may be generated by the decay of charged pions produced as a
secondaries in GZK process [67]. Neutrino flux is constrained by several experiments, see [66] and
references therein, but the sensitivity of current experiments is not enough to detect theoretically
expected flux [68]. Taking into account possible new physics effects makes the conclusion more
optimistic. If there exists a TeV gravity, UHE neutrino will produce black holes in the atmosphere
with production cross-section higher than Standard Model cross-section [69]. On the other hand the
higher interaction cross-section will suppress up-going neutrino flux making Earth non-transparent.
Non-observation of down-going neutrino constrain TeV gravity models while possible observation
of down-going neutrino together with non-observation of up-going neutrino would be a strong
indication of new physics [69].

7. Conclusions and outlook

Cut-off predicted by Greisen, Zatsepin and Kuzmin is observed in 3 independent experiments,
while there is still no direct proof that the corresponding interaction with CMB really takes place.
The UHECR composition, sources and photon observation are three problems with high chances
to be solved by ongoing experiments or their extensions. These advancements will considerably
improve our understanding of hadronic and electromagnetic interactions at the highest energy and
have high discovery potential for new physics.
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