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1. Introduction

In comparing theoretical results with experimental data it is important to use the simplest
single-argument functions which allow one to check direct consequences of the theory without
using model assumptions. The cross-section for e*e~ annihilation into hadrons or its ratio to the
leptonic cross-section, the Drell ratio R(s), which have a straightforward connection with experi-
mentally measured quantities can play the role of these the simplest single-argument functions. The
R(s)-function, have a resonance structure that is difficult to discribe, at the present stage of a theory,
without model considerations. Moreover, the basic method of calculations in quantum field theory,
becomes ill-defined due to the threshold singularities of the form (a/v)", where v = /1 —4m?/s
is a quark velocity, and m is a quark mass. Consequently, the real expansion parameter in the
threshold region is @ /v. Obviously, it becomes to be singular, when the velocity v — 0. Thus, at
the description of quark-antiquark systems close to threshold we can not cut off the perturbative
series even if the expansion parameter, the QCD coupling constant &g, is small [1]. The problem
is well known from QED [2]. To obtain meaningful result these threshold singularities of the form
(a/v)™ have to be summarized. In the nonrelativistic of case for the Coulomb interaction

V(r)=—= (1.1)

this resummation is realized the known S-factor Gamov—Sommerfeld—Sakharov [3]—[5]

X o
i Xy = 22 (12)

Spr= ———m
T —exp(—Xy) Vir

which is related to the wave function of the continuous spectrum at the origin by |y(0)|2. Here 2vy,
is the relative velocity of two nonrelativistic particles. The corresponding nonrelativistic expression
can also be obtained for higher /£ states (see, for instance, [6], [7]).

In the relativistic theory the nonrelativistic approximation needs to be modified. For the first
time the relativistic modification of the S-factor (1.2) in QCD in the case of two particles of equal
masses (m; = mp = m) was executed in [8] (see also [9]) and it consisted in the change vy, — v.
This factor was used for the description of effects close to the threshold of pair production in the
processes ete™ — tf and ete™ — WTW ™. Just the same form of the S-factor for the interaction
of two particles of equal masses was later suggested in [10]. Another form of the relativistic
generalization of the S-factor also in the case of two particles of equal masses was obtained in [11].
The relativistic S-factor for two particles of arbitrary masses (m; # my) was presented in [12].
This factor was derived within the framework of relativistic quantum mechanics on the basis of the
Schrédinger equation.

The new method to relativistic generalization of the S-factor in the case of two particles of
equal masses was developed by Milton and Solovtsov in [13]. Their the method is based on the
relativistic quasipotential (RQP) approach proposed by Logunov and Tavkhelidze [14] in the form
suggested by Kadyshevsky [15]. At present the RQP approach continues to remain one of the
methods of the study of component objects (see, for instance, [16], [17]). In the method developed
in [13], the possibility of transformation of quasipotential (QP) equation from momentum space
into relativistic configurational representation in the case of two particles of equal masses (see [18])
has been used also. Moreover, it is important the potential (1.1) that used by them possesses
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the QCD-like behaviour (see [19]). Thus, the application of the quasipotential approach in QCD
developed by them, gives the following expression for the relativistic S-factor:

X(x o
x X(X):sinhx’

S = T e X ()]

(1.3)
where ¥ is the rapidity related to the total c. m. energy of interacting particles, /s, by 2mcosh y =
\/s. The function X (x) in Eq. (1.3) can be expressed in terms of v as X () = wav/'1 —v?/v. The
method proposed by them in [13] has been generalized in [20] successfully to get the following
expression for the relativistic L-factor (£ > 0) in the case of two particles of equal masses:

X(2)
1 —exp[-X(x)]’

(1.4)

L(x) :,ﬁl ll+ (2nsf:1h)(>2

where the function X () is determined in (1.3). Applications of the factor (1.3) for describing
some hadronic processes can be found in [21]-{23]. Recently, the relativistic S-factor (1.3) has
been applied in [24] to reanalyze the mass limits obtained for magnetic monopoles which might
have been produced at the Fermilab Tevatron.

We note that the solution containing arbitrary functions of r with period i, the so-called the i-
periodic constants, with the same potential was investigated in [25]. However, the using of such so-
lution is suitable for the spectral problems only. Other forms of the QP equation with the Coulomb
potential were considered in [26].

In this talk we discuss the generalization of the previous study started in [13]. The basis of our
consideration is the completely covariant RQP approach in quantum field theory (see [27], [28])
formulated in the relativistic configuration representation for the case of interaction between two
relativistic particles that have unequal masses.

2. Relativistic threshold L-factor

The resumming threshold factors appears in the parametrization of the imaginary part of the
quark current correlator, the Drell ratio R(s), which can be approximated in terms of the Bethe—
Salpeter (BS) amplitude of two charged particles yps(x) at x = 0 (see [29]). The nonrelativistic
replacement of this amplitude by the wave function, which obeys the Schrodinger equation with
the Coulomb potential (1.1), leads to formula (1.2) with a substitution o — 4 ¢tg/3 for QCD. The
possibility of using the RQP approach for our task is based on the fact that the relationship of the
BS amplitude at x = 0 with the RQP wave function in the relativistic configuration representation,
v, (p),is xs(x=0) = V’q(p)|p:i-

The basis of our consideration is the completely covariant QP equation for the RQP partial
wave function ¢@y(p, ) connected with the wave function of interacting particles, y,(p), through
the expansion on a Legendre function of the first kind Plf (z). This equation constructed in [30] for
the case of two relativistic particles of unequal masses given by (in the following we will use the
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system of units c =1 = 1)

, (sinh /)22 (1)1 _ ! d ‘ sin(px’)
/a’ D (2coshy —2cosh ') dcosh 7 sinh X

@2.1)

d_\'_1 [ .p'sin(p'x) 21V (p3Eq) 9u(p, %)
X<dcoshxf) s | P e PP ) =

where m' = \/mim; is mass of an effective relativistic particle, emerging instead of the system
of two particles and carrying the total c. m. energy of the interacting particles, /s, proportional
to its the energy m'E, (see [27], [28]) and u = mimy/(m1 + my) is the usual reduced mass;
is the rapidity which is related to E, = \/1+q? as E, = cosh), and the function (—p)(”l) =
i“t1T (L4 14ip) /T (ip) is the generalized power [18] where T'(z) is the gamma-function.

Generalizing the method developed in [13] (see also [30]-[32]), we will seek a solution of
RQP equation (2.1) with the potential (1.1) in the form

oy %
oo =L — [acers e, e2)

where the {-integration is performed in the complex plane over a contour with end points & and
o (see [30] for details). In the case when the interaction vanishes, @ — 0, the solution ¢y(p, )
should reproduce the known free wave function:

. sin —7ml/2
(}gno ©e(p,x) = ppe(p,coshy) P M, (2.3)

—so0 sinh

where the function py(p,coshy) is the solution of Eq. (2.1) in the case when the interaction is
switched off, V(p;E,) =0.

The L-factor in the nonrelativistic case is defined by derivative of the order £ of the the wave
function at » = 0. In the relativistic case, instead of the derivative, one has to use its finite difference

analog [18]: 5
o1 9\
A* = Z [exp (lap) 1] . 2.4)

Thus, the relativistic L-factor is connected with the RQP partial wave function ¢;(p , %) as follows

Luyneq(x) = lim (2.5)

p—i

2
r(2e+2) o[ Pl 2)
(2 sinh x)¢T2(£+1) (&%) [ P ]

The resulting solution Eq. (2.1) with the potential (1.1) at arbitrary £ > 0 which does not contain
the i-periodic constant, represents in terms of hypergeometrical function by

@i, %) = No(x)(—p)EHD PrHAZHIR(EHT) o

F(0+1—iA,0+1—ip;20+2;1—e~2%) ap 2.6)

" m/sinhy’

where the normalization constant N;()) can be obtained from the condition (2.3).
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By using Eqgs. (2.3) and (2.4)—(2.6), we finally find the following expression for the relativistic
L-factor in the case of two particles of unequal masses:

14 au 2
Luneq(X) ZE[I‘F (m) :| Suneq(X)- (2.7)
Here
e e )P Xuneg(2) N 2map
Suneq(%) - })lin: p - 1—exp [_Xuneq(X)] ) Xuneq(x ) - m! sinhx’ ’ (28)

is the relativistic S-factor in the case of two particles of unequal masses [30], and the rapidity ¥ is
related to the total c. m. energy, /s, as (m'>/t) cosh x = 1/s. The functions sinhy and Xuneq(X)
in Egs. (2.7) and (2.8) can be expressed in terms of the “velocity” u

4m'?

in the form sinh y = 2pu/(m'v/'1 — u?), Xuneq(X) = mav/1 — u? /u. The square of relative 3-momen-
tum K’ for an effective relativistic particle, having mass m’, the total c. m. energy of interacting
particles, /s, and emerging instead of the system of two particles with their the relative relativistic
velocity v, gives by the expression (see [27], [28])

12
m' k 1
s=—Vm?2+k?, —=p|—eou—1]. 2.10
/s m o u( T—ve ) (2.10)

Thence, taking into consideration the determination (2.9) and expressions in Eq. (2.10), we find

2u 2 )

|V| = 1+2° = :uz(urel) ’ (2.11)
where )
li u
Ure) = Jioe (2.12)

is the relative velocity of an effective relativistic particle with mass m'.
Thus, in terms of relative velocity of an effective relativistic particle (2.12), the S-factor (2.8)
and L-factor (2.7) are given by expressions

’ X u’ ' 2wQ
Suneq(urel) = uneq( rel) ] ) Xuneq(urel) = 7 > (2.13)

rel

!

1= exp [—Xuneq ()

2
o

v ()
Nl e

The S-factor in Eq. (2.13) only formally has the same form, as the nonrelativistic S-factor (1.2).
However, the S-factor in Eq. (2.13) has an obviously relativistic nature since as the argument r (the

!

Suneq (i) - (2.14)

{
!
Luneq(“rel) = H
n=1

module of radius-vector r) in the Coulomb potential (1.1) and the relative velocity of an effective
relativistic particle (2.12), according to Eq. (2.11), possesses this property as well.
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Figure 1: Behavior of the S- and P-factors at different values of the parameter o (the numbers at the curves).

The relativistic threshold factors (2.13) and (2.14) has the following important properties. In
the nonrelativistic limit, u < 1, they reproduces the well-known nonrelativistic result. In the rel-
ativistic limit, # — 1, the factors (2.13) and (2.14) go to unity. In the case of equal masses they
coincides with S-factor (1.3) and L-factor (1.4). In the ultrarelativistic limit, as it was argued in [33],
[34], the bound state spectrum vanishes since mass of an effective relativistic particle m’ — 0. This
feature reflects an essential difference between potential models and quantum field theory where
an additional dimensional parameter appears. Thus, within a potential model the relativistic factors
(2.13) and (2.14) reproduces both the known nonrelativistic and the expected ultrarelativistic limits.

To illustrate the differences between the new relativistic S- and P-factors in Eqgs. (2.13) and
(2.14) (¢ = 1) with their the nonrelativistic analoges in more detail, in Fig. (1) we plot the behavior
of these factors as functions of u at different values of the parameter & (the numbers at the curves).

From this figures one can see that in the region of nonrelativistic values of u, u < 0.2, where
their the influence are big, the differences between the new relativistic S- and P-factors and their
the nonrelativistic analoges are practically absent. However, when a increases, the nonrelativistic
expressions gives a less suitable result in the region of large values u, in particular, as u — 1.

Thus, the above analysis demonstrates that the relativistic S- and L-factors in Eqs. (2.13) and
(2.14), as would be expected, coincides in form with their the nonrelativistic analoges. However,
the relative velocity of an effective relativistic particle (2.12) emerging instead of the system of two
particles, now plays role of the parameter of velocity, but not the relativistic relative velocity of
interacting particles, v.

The principal contribution to the function R(s) for the vector current with the S-factor can be
written as

2
R(s) = R (s) = [1 _(m _st)Z] [”(3;M2) N (m ;sz)zu_%

S(u,a), (2.15)
where the total c. m. energy of interacting particles, /s, according to Eq. (2.9), can be expressed
in terms of the “velocity” u as s = [(m1 +mg)? — (m1 — ma)*u?]/(1
expression without the S-factor can be found in paper [35]. By using this formula, we study the

—u?). The corresponding

influence of the S-factor to the function R$,O ). For Fig. (2) is shown dependence of the behaviour of

0)

the value Rg, with the new S-factor (2.13) as a function of dimensionless variable \/s/(m; +m;) at

different values of the parameter & (the numbers at the curves). This figure shows that the influence
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Figure 2: Behavior of the function Rg,o ).

of the new S-factor (2.13) is much stronger in the threshold region and with growing energy /s
weakens, and all curves approach unity.

3. Conclusion

Thus, the new relativistic Coulomb-like threshold resumming L-factor (2.14) in QCD for ar-
bitrary orbital angular momentum £ > 0 was obtained. For this aim the relativistic quasipoten-
tial equation in relativistic configuration representation [27] with the Coulomb potential of in-
teraction of two relativistic particles of unequal masses was used. The new L-factor reproduce
both the known nonrelativistic and expected ultrarelativistic limits and correspond to the QCD-
like Coulomb potential. As the L-factor (2.14) was obtained within the framework of completely
covariant method, one can expect that this factor takes into account more adequately relativistic
nature of interaction. We have suggested new expression for R(s) in which threshold singularities
are summarized by a potential contribution. It was demonstrated that the new relativistic S-factor
has the influence on the behavior of the function R(s).
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