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In the framework of the two-Higgs-doublet model with temperature-dependent effective parame-

tersλ1,...7(T) we define the four bifurcation sets which appear as a consequence of the condition

det∂ 2Ui j /∂vi∂v j =0 for the stability matrix. Numerical investigations of theelectroweak phase

transition are performed for the full MSSM parameter space (mH± , tgβ , At,b, µ , mQ, mU , mD)

using the temperature-dependent effective parametersλ1-λ5(T) calculated at the one-loop in the

imaginary time formalism. Four types of transitions can take place in the MSSM background

field space (v1, v2). They are different in the direction, defined by a critical angle in the (v1, v2)

plane, and in the strength, which is estimated by means of Shaposhnikov criteriavc/Tc >1. Ex-

tensive regions in the (At,b, µ) plane correspond to the strongly first order phase transition. The

case of light top quark superpartner is favored, giving an acceptable configurations of surfaces for

extrema of the effective potential.
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1. Introduction

Theories of cosmological evolution usually include an assumption that rather hot early uni-
verse with the temperature of the order of a few hundreds of GeV and unbrokenSU(2)w×U(1)Y

symmetry of the ground state (characterized by zero Higgs field vacuum expectation value - v.e.v.)
was transformed with the decrease of temperature to the state with nonzero Higgs field v.e.v., so as
a result of such electroweak phase transition the electroweak symmetry was broken spontaneously
down toU(1)em. Investigation of the temperature evolution beyond the Standard Model is impor-
tant as a basis for models which describe generation of the baryon asymmetry, nature of the dark
matter and also for some inflationary models of early universe.

In the following we are going to analyze the equilibrium states of the effective finite-temperature
potential (free energy) for the two-Higgs doublet model (THDM)

Ue f f(Φ1,Φ2)=−µ2
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where the temperature-dependent background field v.e.v.’sare〈Φ1〉 = (0,v1(T))/
√

2 and〈Φ2〉 =

(0,v2(T))/
√

2. Local properties ofUe f f(v1,v2,λ1, ...λ7) are defined by a number of well-known
theorems in the framework of the catastrophe theory (Morse and Thom theorems for the reduction
of a potential function to the canonical form by a nonlinear transformation [1]). They describe
properties of the stationary state∇Ue f f(v1,v2) =0 defined by the stability matrix (also called the
Hessian)Ui j = ∂ 2Ue f f/∂vi∂v j .

2. Bifurcation sets in the two-Higgs-doublet model

Thermodynamical evolution of the two-Higgs-doublet potential (1.1) as a function of the two
variables of statev1 andv2 and six temperature-dependent control parametersλ1(T), ...λ7(T)
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2 (2.1)

from some high temperatureT of the order of several hundred GeV down to zero is defined not
only by a temperature evolution of effective parametersλ1,...7(T) but also by the parametric depen-
dence ofλ1,...7 on masses, couplings and mixing angles which exist in different sectors of a model
under consideration. In the following numerical analysis we shall use the one-loop temperature-
dependentλ1,...7 calculated symbolically in the framework of the MSSM, see [2, 3]. We denote
λ345 = λ3 + λ4 +Reλ5. Conditions of the extremum∇U(v1,v2) = 0 distinguishing an isolated (or
nondegenerate) critical points
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where

Reµ2
12 = sinβ cosβ [m2

A +
v2

2
(2Reλ5 +Reλ6ctgβ +Reλ7tgβ )],

are also mentioned as the minimization conditions which setto zero the linear terms in the physical
Higgs fieldsh, H andA and ensure a local extremum at any point of the surfaceUe f f(v1,v2) in the
background field space (see e.g. [4])1 Important input parameters of the two-doublet potential are
tgβ = v2/v1 and the charged Higgs boson mass

m2
H± = m2

W +m2
A−

v2

2
(Re∆λ5−∆λ4) (2.4)

where the effective temperature-dependent mass of the longitudinalW-boson ism2
WL

(v,T)= m2
W(v)+

ΠWL(T), ΠWL(T) = 5g2
2T2/2 (with the one-loop Standard Model and third-generation squarks con-

tributions included in the polarization operator;m2
W = v2g2

2/2). Thermal evolution of the system
in thev1(T),v2(T) space is, as a rule, an equilibrium process, which conservesthe minimization
of U with respect to the scalar fields oscillation in the extremumdefined by current values of
v1(T),v2(T). Such assumption continuously admits the interpretation of the system in terms of
scalar mass eigenstatesh,H andA, thenµ2

1 , µ2
2 andµ4

12 can be expressed by means of the effective
parametersλ1,...7 [4].

For simplicity we consider the caseλ6 = λ7 = 0. The two-doublet Higgs potential withoutλ6

andλ7 terms has been considered in the context of discrete Peccei-Quinn symmetry [5]. Noniso-
lated (or degenerate) critical points in thev1,v2 plane are defined by the conditiondet∂ 2U/∂vi∂v j =0
which can be written in the form

det

∥

∥

∥

∥

∥

2λ1v2
1 + µ2

12
v2
v1

−µ2
12+ λ345v1v2

−µ2
12+ λ345v1v2 2λ2v2

2 + µ2
12

v1
v2

∥

∥

∥

∥

∥

= 0 (2.5)

where the minimization conditions (2.2) and (2.3) (or, equivalently, the conditions for isolated
points ofU(v1,v2)) have been substituted. The system of two nonlinear equations forv1,v2

λ1v3
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can be factorized by the rotation in thev1,v2 plane

v1 = v̄1cosβ̄ − v̄2sinβ̄ , v2 = v̄1sinβ̄ + v̄2cosβ̄ (2.7)

where
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1Although only the CP-conserving limit is considered, we keep the notation of real parts for the variables where a
phase factor could appear in the general case.
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Then the factorized equations (2.6) are

v̄1(λ1v̄2
1 +

λ345

2
v̄2

2− µ̄2
1) = 0 (2.9)

v̄2(λ2v̄2
2 +

λ345

2
v̄2

1− µ̄2
2) = 0

where

µ̄2
1,2 =

1
2
(µ2

1 + µ2
2 ±

√

(µ2
1 −µ2

2)2 +4µ4
12) (2.10)

and the four types of bifurcation sets defined by the stability matricesUi j (v1,v2) can be easily found
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Figure 1: Left panel: bifurcation set (1), contour of negatively defined determinantλ1λ2 − λ 2
345/4 (dark

grey area), see Eq.(2.11), in the (At = Ab, µ) plane at the temperature 150 GeV. The squark sector parameter
valuesmQ =500 GeV,mU =200 GeV,mD =800 GeV are in line with the case of light stop quark. Right panel:
bifurcation set (2), contour of negatively defined determinant(4λ1+λ345)(4λ2+λ345)− (3λ345−λ1−λ2)

2

(dark grey area), see Eq.(2.17), at the same parameter values.

Bifurcation set of the case (1), which is defined bydet∂ 2U/∂vi∂v j =0, can be understood
in the elementary language. The surface of stationary points Ue f f(v1,v2) = −(λ1v4

1 + λ2v4
2 +

λ345v2
1v2

2)/4 is positively defined and unbounded from above if the Sylvester’s criteria for the
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quadratic formUe f f(v2
1,v

2
2) is respected

λ1 < 0, λ2 < 0, λ1λ2−
λ 2

345

4
< 0 (2.11)

At the critical temperature defined by the equationλ1λ2−λ 2
345/4=0 the positively defined potential

surface of stationary points starts to develop the saddle configuration which is unbounded from
below. The "flat direction" at the critical temperature which is developed at the angletg2θ =

2λ345/(λ 2
1 −λ 2

2 ), or

tgθ =

∣

∣

∣

∣

∣

λ345

|λ1−λ2|−
√

(λ1−λ2)2 + λ 2
345

∣

∣

∣

∣

∣

(2.12)

is defined by the control parametersλ1(T), λ2(T) andλ345(T) not depending on thev1 andv2.
The contour for Sylvester’s criteria (2.11) is shown in Fig.1 at the temperatureT =150 GeV in
the (A = At = Ab, µ) plane. The squark mass parametersmQ, mU and mD are fixed, the (A,µ)
parameters are chosen in the vicinity of the contours which separate positively and negatively
definedλ -parameters in (2.11). The critical temperature in this case is slightly above 120 GeV,
insignificantly dependent on the values of (At,b, µ) if they are changing along the contours in Fig.1,
separating the light grey and the dark grey areas. The strength of the electroweak phase transition
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Figure 2: Contours for the criteriavc
Tc

= 1 in the (At=Ab, µ) plane. In the light grey regionsvc
Tc

>1. In
order to include qualitatively the effect ofEMSSM, for the left plotE = 2ESM and for the right plotE = 4ESM.
λ6 = λ7 =0, charged Higgs boson massmH± =150 GeV. Set (A), the case of light stop, is used for the squark
sector parameter values (mQ =500 GeV,mU =200 GeV,mD =800 GeV).

along the direction (2.12) can be roughly estimated using the equation

v(Tc)

Tc
=

2
√

2E
λ (θ)

(2.13)

whereE is a temperature-independent factor in front of the cubic term −ETv3 in the effective

potential rewritten in the polar coordinates (v =
√

v2
1 +v2

2, θ = arctan(v2/v1) ), andλ (θ) is a

factor in front of the quartic termv4/4. The cubic term is given by corrections coming from the
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resummation of the multiloop diagrams in the infrared region. In the case of a heavy stop which
decouples [6], the effective potential is similar to Standard Model potential and

ESM =
2
√

2
48π

[2g3
2 +(g2

1 +g2
2)

3/2] =

√
2

3
(2m2

W +m3
Z)

πv3 . (2.14)

In the case of a light stop one can use an approximationE = ESM+ EMSSM, where an additional
term [7]

EMSSM=
2
√

2
3πv3 m3

t (1− Ã2
t

m2
Q

)
3
2 , (2.15)

stop mixing parameter herẽAt = At − µ/tgβ . The quartic term along the direction (2.12) can be
written in the form

λ (θ) = −λ1 + λ345tg
2θ + λ2tg

4θ +2λ6tgθ +2λ7tg
3θ

(1+tg2θ)2 . (2.16)

The conditionvc/Tc >1 [8], necessary to avoid sphaleron transitions which erasethe baryon asym-
metry initially generated at the electroweak phase transition, can be respected in a rather extensive
regions of the (A,µ) plane. The contours ofvc/Tc >1 in the (A,µ) plane (see Fig.2) separate the
regions not only around the origin (A,µ)=(0,0), but also the areas with (A,µ) of the order of 1 TeV,
where the quartic termλ (θ) changes sign crossing zero along the flat direction (2.12).

For the general case of nonzeroλ6 and λ7 which are defined at the one-loop in the finite-
temperature MSSM, see [2, 3], the effective potentialUe f f(v1,v2) = −(λ1v4

1 + λ2v4
2 + λ345v2

1v2
2 +

2λ6v3
1v2 + 2λ7v1v3

2)/4 always demonstrates a saddle configuration for the surfaceof stationary
points, which slopes become steeper with an increase of the temperature.

Bifurcation sets in the cases (2) and (3) are different from the bifurcation set in the case (1).
For the case (2) we found

(4λ1 + λ345)v
4
1 +(4λ2 + λ345)v

4
2 +(6λ345−2λ1−2λ2)v

2
1v2

2 = 0 (2.17)

The regions of positively and negatively definedλ1 andλ2 and the contour for Sylvester’s criteria
for the form (2.17) are shown in Fig.1 at the temperatureT =150 GeV in the (A = At = Ab, µ)
plane. The phase transition for the case (2) is developed in the directionθ of the (v1,v2) plane

tg2θ =
4(3λ345−λ1−λ2)

(4λ1 + λ345)2− (4λ2 + λ345)2 (2.18)

Bifurcation set in the case (4) ¯v1 =0 and v̄2 =0 defined by the equation̄µ2
1 µ̄2

2 =0 can also
be understood on the elementary level as a result of the diagonalization of the effective potential

Ue f f = − µ2
1

2 v2
1 −

µ2
2

2 v2
2− µ2

12v
2
1v2

2 by the rotation (2.7), giving the formUe f f = −µ̄2
1 v̄2

1 − µ̄2
2 v̄2

2. In
such regime all other sectors of the model decouple, dominant contribution is given by the "mass
term" of dimension two in the fields. The critical temperature is defined by the equation [10]

µ2
1µ2

2 = µ4
12 (2.19)

which is equivalent tōµ2
1 =0 or µ̄2

2 =0. If λi are small enough the critical angle can be expressed
as

tg2θ = tg2β
1

( v2

2m2
A
−α1)

1
2λ1 cos2 β−2λ2 sin2 β

cos2β −λ345+
2m2

A
v2 + α2

(2.20)
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where

α1 =
λ5

2
+

1
4
(λ6ctgβ + λ7tgβ ), α2 = λ6(tg2β −ctgβ )−λ7(tgβ +tg2β ). (2.21)

A number of contours in the MSSM parameter space for this casecan be found in [3].

3. Summary

Four types of bifurcation sets for the effective finite-temperature two-Higgs-doublet potential
Ue f f(v1,v2) are found. In the MSSM the bifurcation set (1) defined by Eq.(2.11) develops a phase
transition in the direction fixed by Eq.(2.12) in the (v1,v2) plane. Numerical investigations in the
MSSM show that the parameter set with soft SUSY breaking parametersA andµ of the order of
1 TeV, inherent to known MSSM scenarios [9] of strong CP violation (CPX), combined with the
squark-Higgs boson sector parametersmQ =500 GeV,mU =200 GeV andmD =800 GeV, gives an
acceptable configuration of the surface for stationary points (paraboloid with a global minimum
at the origin at high temperatures and a saddle at low temperatures). In the region of the MSSM
parameter space characterized bymQ, mU andmD as indicated above or close to these values, the top
scalar quark is light (not much above 100 GeV). The bifurcation contour (also called the separatrix
in the catastrophe theory terminology) in the (A, µ) plane for the set (1) is shown in Fig.1, left.
Alternatively, parameter sets with the light sbottom and heavy stop always, both at a high and at a
low temperatures, give a saddle configuration for the surface of stationary points. The bifurcation
sets (2) and (3) are similar, demonstrating a phase transition in the direction defined by Eq.(2.18)
in the (v1,v2) plane. The bifurcation contours in the (A, µ) plane for the set (2) are shown in Fig.1,
right. Again, only the parameter set with the light stop demonstrates a necessary configuration
of the equilibrium surfaces. The bifurcation set (4) includes a phase transition in the direction
of Eq.(2.20) at the temperature defined by Eq.(2.19). Analogous case was analyzed earlier in the
literature in the context of the one-dimensional effectivepotential. Summarizing, in all four cases
the global minimum at the originv1 = v2 =0,Ue f f(0,0) =0 at high temperatures is transformed to
a local minimum withUe f f(v1,v2) <0 at a lower temperature for the MSSM parameter sets with a
light superpartner of the top quark, but the directions of transition to this minimum in the (v1,v2)
plane are different.

Rough estimate for the strength of the first order phase transition using the approximation for
vc/Tc defined by Eq.(2.13), when the mimimum at the origin is on the same level with the minimum
atvc, separated by a low potential barrier along a critical direction, demonstrates a rather extensive
regions of strong first order phase transition in the (A, µ) plane (Fig.2). They increase with the
decrease of the quartic term parameterλ (θ), Eq.(2.16), being less significantly dependent on the
factorE, see Eq.(2.13), in front of the cubic term.

Acknowlegements. Work was partially supported by grants ADTP 3341, RFBR 10-02-00525-a, NS
1456.2008.2 and FAP contract 5163.
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