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The stability of isotropic cosmological solutions for two-field models in the Bianchi | met-

rics is considered. We have proved that the sufficient conditions for Lyapunov stability in the
Friedmann—Robertson—Walker metric are sufficient for the stability under anisotropic perturba-
tions in the Bianchi | metric as well. The standard way to construct cosmological models with
exact solutions in the Friedmann—Robertson—Walker metric is the superpotential method. We
have used the superpotential method to construct stable kink-type solutions and obtained condi-
tions on superpotential, which are sufficient conditions for the Lyapunov stability. We analyze the
stability of isotropic kink-type solutions for quintom models related to the string field theory.
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1. Introduction

Contemporary observations][give strong support that the uniformly distributed cosmic fluid
with negative pressure, the so-called dark energy, currently dominates in the Universe. The dark
energy state parametenpe = —140.2. Strong restrictions on the anisotropy were found using
observations, 3], and it was also shown that the Universe is spatially flat at large scales. The
recent analysis of the observation datad] (see also reviews] 7]) indicates that the varying in
time wpg gives a better fit thampe = —1, corresponding to the cosmological constant.

The standard way to obtain an evolving state parameter is to include scalar fields into a cosmo-
logical model. Two-field models with the crossing of the cosmological constant bagies —1
are known as quintom models and include one phantom scalar field and one ordinary scalar field.
Quintom models are being actively studied at present téné, [8, 9, 10, 11, 12.

The cosmological models with the crossing of the cosmological constant barrier violate the
null energy condition (NEC). The NEC violating models can admit classically stable solutions
in the Friedmann—Robertson-Walker (FRW) cosmology. In particular, there are classically stable
solutions for self-interacting ghost models with minimal coupling to gravity. Moreover, there exists
an attractor behavior in a class of the phantom cosmological matigl$(]. The standard way to
analyse the stability of quintom model [LO, 11] (see alsoT]) includes the change of variables.

In the case of exponential potentials this change is usgfiubgcause it transforms some depending
on time solutions into fixed points of new system. For an arbitrary potential it is possible to get
the stability conditions, obtained il (], without any change of variabled4]. We show that the
obtained conditions are sufficient for stability not only in the FRW metric, but also in the Bianchi
I metric. For one-field models in the Bianchi | metric, the sufficient conditions for stability of
isotropic solutions, which tend to fixed points, have been obtainethin [

In [9, 16] the superpotential method has been used to construct quintom models with exact
solutions. In this paper we express the stability conditions in terms of the superpotential and use
this method for construction of two-field models with stable exact solutions. We also check the
stability of solutions, obtained in the string field theory (SFT) inspired quintom mo@gel$s].

2. The Bianchi | cosmological model with scalar and phantom scalar fields

We consider a cosmological model with two scalar fieldand¢, described by the action

R C C
— [ d*./= [ v ~2 uv _
s= [d/=3( g, - (G U0a0+ FUaLaE VO.0))). @)
where the potential (¢, &) is a twice continuously differentiable function, which can include the
cosmological constam, Gy is the Newtonian gravitational constagtand& are either scalar or
phantom scalar fields in dependence on signs of constanasdC,. The metric tensog,, =
diag(—1,a3(t),a3(t),a3(t)) in the Bianchi | metric £7]. It is convenient to express the functions

1To specify different components of the cosmic fluid one typically uses a phenomenological relatiop be-
tween the pressure (Lagrangian densfiygnd the energy densify corresponding to each component of the fluid. The
functionw is called the state parameter.
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a(t) in terms of new functiong and f3; (we use notations fromlB]), which are subject to the
constraintB; + B2 + B3 = 0. One has the following relations

at)=at)efV,  hence, a(t)=(ai(t)ay(t)as(t))>. (2.2)
Following [18], we introduce the shear variabt& = [312+ﬁ22 +/3§ and get the Einstein equations:
Bi = —3HB, % (6%) = —6HG?, (2.3)
3H2—%02:87rGNp, 2H +3H2+%02: —8nGnp, (2.4)
whereH = &/a, a dot denotes a time derivative and
p=Z07+FEHV(0.6),  p= 97+ TE-V(9,6). (2.5)
We also obtain from actior2(1) the following equations:
- : 10V - - 10V
_ — _3Hy-— 2% = = —3H{- T —. 2.
o=y, v 3"’cla¢’ &=¢, ¢ 3Ccza§ (2.6)
Summing equation(4) we obtain
H= —3H24+8aG\V(9,&). (2.7)

3. Sufficient conditions for Lyapunov stability of fixed point

Let us assume that the fielgsandé tend to finite limits at — +o. System 2.6)-(2.7) has a
fixed pointys = (Ht, o1, y¢, 8¢, G ) if and only if yt =0, {s =0,

oV Vv 8nG
Vo= 350160 =0 Vi=Tp(onE) =0 HP=T00nE). @)

The stability of a kink or lump solution means the stability of the fixed point that the solution
tends to. To analyse the stabilityyfwe study the stability of this fixed point for the corresponding
linearized system of equations and use the Lyapunov thedr@mli the neighborhood of;

H(t) = H¢ +ehy(t) + O(€?), (3.2)
O(t) = 91 +epu(t) +O(e?), w(t) =eya(t) +O(e?), (33)
E(t) = &r+e&i(t) +0(e2), L(t)=eli(t)+O(?), (3.4)
wheree is a small parameter. To first orderdérwe obtain the following system of equations
hi(t) = —6Hha(t), (3.5)
- : 1
00 = wa(®). Yl = ~3Hiva0) — & (Vo0 +Ve &) (3.6)
Gi(t) = Gu(t), G(t) = _3Hf§l(t)_62 (Vé’q,¢1(t)+vg’%51(t))7 3.7)
whereVy, = g%g(q)f,éf), Vgg = g%g(q)f,éf), q;’é = (f;—av&(q)f,éf). Analyzing solutions of §.5—
(3.7) we get the sufficient stability conditions of the fixed poib/]
\VZi v/ VAV v/ 2
g8 Yoo £ 799 &
Hi >0, C + C >0, c.Co > cG, (3.8)
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4. Construction of stable solutions via the superpotential method

Let us consider the superpotential method for two-field mod#lsq, 16] in the FRW met-
ric. We assume that the Hubble paramétkt) is a function (superpotential) af(t) and & (t):
H(t) =W(¢(t),&(t)), and that functiong (t) and&(t) are solutions of the following system of
two ordinary differential equations = F (¢, &), 5 =G(¢,&), whereF (¢,&) andG(¢, &) are such
continuously differentiable function th%g = %g—g. It is easy to check that equatior&s@)—(2.7)
are solved provided the following relations are satisfied:

oW : oW -
ﬁ == —47TGNC]_¢, f = —47TGNCZ§, (41)
Vo3 el L (L aWNT L oW 4.2)
- 87'L'GN 327[2(3,%‘ Cl 8¢> C2 85 ' '

The goal of this subsection is to obtain conditions on the superpotétiahich are equiva-
lent to conditions .8) for the corresponding potentidl. At the fixed pointys = (Hy, ¢¢, ws,0,0)

W=W(on g0 —H W=Tl0nE0 =0 W=T50nE) =0 @3

It is easy to see that from(3) it follows thatVy = 0, Vé = 0. The conditionH; > 0 is
equivalent toN; > 0. If qglg =0, then d;/é = 0 and conditions3.8) are

(120GNCIW — W) Wy >0, (128GNCaW — W, ) W > 0. (4.4)

In the general case we have the sufficient stability conditions in the following form
2
12C1Con G (CoWyy, +CaWE e )Wr > C3 (W,;’¢)2 4 2C;1Co( q;’g) +CR (W, )2, (4.5)

<l44:102717 ZGEIWfZ —12C,ConGy (Csz;/(p + C]-Wélé )Wf +W/ W — (W”

2
F Wiy — (W )?) = 4.6)
x (WZWyly — (Wi )2) > 0.

5. String field theory inspired cosmological models

An interest in cosmological models coming from open string field theo®igsi$ caused by
a possibility to get solutions rolling from a perturbative vacuum to the true one. The dark energy
model R1] assumes that our Universe is a slowly decaying D3-brane and its dynamics is described
by the open string tachyon mode. For the open fermionic NSR string with the GS&@ctor in a
reasonable approximation, one gets the Mexican hat potential for the tachyo2 #lelg¢lling of
the tachyon from the unstable perturbative extremum towards this minimum describes, according
to the Sen conjectur@p)], the transition of an unstable D-brane to a true vacuum. In fact one gets a
nonlocal potential with a string scale as a parameter of nonlocality. After a suitable field redefinition
the potential becomes local, meanwhile, the kinetic term becomes non-local. This nonstandard
kinetic term has a so-called phantomlike behavior and can be approximated by a phantom kinetic
term. It has been found that the open string tachyon behavior is effectively modelled by a scalar
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field with a negative kinetic term2[]. The back reaction of this brane is incorporated in the
dynamics of the closed string tachyon. The scalar fiemes from the closed string sector and
its effective local description is given by an ordinary kinetic term.

In the papers9, 16] quintom modelsC; = —C, < 0) with effective the sixth degree polyno-
mial potentiald/ (¢, &) have been considered:

6 6k
V(.8 =Y Z)ckmké’, V(9.§) =V (-9,-&). (5.1)
k=0 )=

From the SFT we can also assume asymptotic conditions for solutions. We assume that the
phantom fieldg (t) smoothly rolls from the unstable perturbative vacuym=0) to a nonpertur-
bative one, for exampleé = A, and stops there. The fielflt) corresponds to close string and is
expected to go asymptotically to zero in the infinite future. In other words we plan to analyse the
stability of solutions, which tends to a fixed point with= A and&; = 0.

To construct the sixth degree even polynomial poteitial, &) we can choos&/(¢,&) as an
arbitrary third degree odd polynomial:

Ws(9,&) = 4nGn (aro +a300° +a01& +a0sE3 +ap190%E +ai29E2), (5.2)

wherea  are constants. Using asymptotic conditiopé:-o) = A, & (4-00) =0, ¢ (+00) = & (+00) =
0 we obtaina; o = — 3a37oA2, a1 = — a271A2. So, we get the following system of equations:

. 1 : 1
¢ = S (3ago(9? — A?) +28p10& +anpE?), &= — c (ap1(9% — A?) +3ap3E2 + 2a1 208 .
(5.3)
At the fixed pointps = A, & = 0 we haveW; = — 87rGNa370A3. So, the conditions3(8) are as
follows:

ag’oA <0, (54)
285, — &% , — 121GNCoAag 08 2 + 9(ATGNCLA% — 1)a5 o > O, (5.5)

(3agoay2 — a3 1) (3(4nGNAPC, — 1)ag oy » — 36TGNAZCH(4TGNAC, — 1)ad o+ 83 1) < O.
(5.6)
If ag1 =0, then dg/é = 0 and the sulfficient conditions for the stability have the following form
ag,oA <0, 47'L'GNCzA2 >1 a]_’z(aLz + 127TGN0261370A2) < 0. (5.7)

The case of superpotentik(¢, ) with a1 = 0 andagz = 0 has been considered i, [LE]. In
this case the systerb.() has the following form

o= — &é g _ (23.1,2 - 3&370) 5'2+ 2&1’2

2a12&’ 22y 26 Cs

For some values of parameters the general solutio®.8f ¢an be presented in the explicit
form [16]. Indeed, abzo/a12 = —1/3 system§.8) has the following general solution:

& (3ag0A? — a1 2£2). (5.8)

A (CEetaA/C: — 4at CIAD3 — 428 ,A2D3)
Ps(t) = - : : (5.9)
) (Co€222M/C2 — 2Dy HA)° + 64D2al ,C2A2
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16D;C3a? ,A%e?2A/C
(Coe2%.2M/C2 — 2Dy ,A)° + 64D2al ,C2A2

és(t) - (5-10)

Let us analyse the stability of the exact solution. One can seedftatinds(t) are continuous
functions, which tend to a fixed pointtat- co. Therefore, the obtained exact solution is attractive if
and only if the fixed point is asymptotically stable. @to = —a; 2/3 we obtain that three stability
conditions 6.7) transform into two independent conditioag,A > 0 and &GNA%C, > 1.

6. Conclusion

We have analysed the stability of isotropic solutions for two-field models. Using the Lyapunov
theorem we have found sufficient conditions of stability of kink-type and lump-type isotropic so-
lutions for two-field models in the Bianchi | metric. The obtained results allow us to prove that the
exact solutions, found in string inspired phantom mod@|4.§], are stable.

We have presented the algorithm for construction of kink-type and lump-type isotropic ex-
act stable solutions via the superpotential method. In particular we have formulated the stability
conditions in terms of superpotential.

Our study of the stability of isotropic solutions for quintom models in the Bianchi | metric
shows that the NEC is not a necessary condition for classical stability of isotropic solutions. In
this paper we have shown that the modéls16] have stable isotropic solutions and that large
anisotropy does not appear in these models. It means that considered models are acceptable, be-
cause they do not violate limits on anisotropic models, obtained from the observatiGhs [
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