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The stability of isotropic cosmological solutions for two-field models in the Bianchi I met-

rics is considered. We have proved that the sufficient conditions for Lyapunov stability in the

Friedmann–Robertson–Walker metric are sufficient for the stability under anisotropic perturba-

tions in the Bianchi I metric as well. The standard way to construct cosmological models with

exact solutions in the Friedmann–Robertson–Walker metric is the superpotential method. We

have used the superpotential method to construct stable kink-type solutions and obtained condi-

tions on superpotential, which are sufficient conditions for the Lyapunov stability. We analyze the

stability of isotropic kink-type solutions for quintom models related to the string field theory.
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1. Introduction

Contemporary observations [1] give strong support that the uniformly distributed cosmic fluid
with negative pressure, the so-called dark energy, currently dominates in the Universe. The dark
energy state parameter1 wDE = −1±0.2. Strong restrictions on the anisotropy were found using
observations [2, 3], and it was also shown that the Universe is spatially flat at large scales. The
recent analysis of the observation data [4, 5] (see also reviews [6, 7]) indicates that the varying in
timewDE gives a better fit thanwDE≡−1, corresponding to the cosmological constant.

The standard way to obtain an evolving state parameter is to include scalar fields into a cosmo-
logical model. Two-field models with the crossing of the cosmological constant barrierwDE =−1
are known as quintom models and include one phantom scalar field and one ordinary scalar field.
Quintom models are being actively studied at present time [6, 7, 8, 9, 10, 11, 12].

The cosmological models with the crossing of the cosmological constant barrier violate the
null energy condition (NEC). The NEC violating models can admit classically stable solutions
in the Friedmann–Robertson–Walker (FRW) cosmology. In particular, there are classically stable
solutions for self-interacting ghost models with minimal coupling to gravity. Moreover, there exists
an attractor behavior in a class of the phantom cosmological models [13, 10]. The standard way to
analyse the stability of quintom models [8, 10, 11] (see also [7]) includes the change of variables.
In the case of exponential potentials this change is useful [8], because it transforms some depending
on time solutions into fixed points of new system. For an arbitrary potential it is possible to get
the stability conditions, obtained in [10], without any change of variables [14]. We show that the
obtained conditions are sufficient for stability not only in the FRW metric, but also in the Bianchi
I metric. For one-field models in the Bianchi I metric, the sufficient conditions for stability of
isotropic solutions, which tend to fixed points, have been obtained in [15].

In [9, 16] the superpotential method has been used to construct quintom models with exact
solutions. In this paper we express the stability conditions in terms of the superpotential and use
this method for construction of two-field models with stable exact solutions. We also check the
stability of solutions, obtained in the string field theory (SFT) inspired quintom models [9, 16].

2. The Bianchi I cosmological model with scalar and phantom scalar fields

We consider a cosmological model with two scalar fieldsφ1 andφ2 described by the action

S=
∫

d4x
√
−g

(
R

16πGN
−
(

C1

2
gµν

∂µφ∂νφ +
C2

2
gµν

∂µξ ∂νξ −V(φ ,ξ )
))

, (2.1)

where the potentialV(φ ,ξ ) is a twice continuously differentiable function, which can include the
cosmological constantΛ, GN is the Newtonian gravitational constant,φ andξ are either scalar or
phantom scalar fields in dependence on signs of constantsC1 andC2. The metric tensorgµν =
diag(−1,a2

1(t),a
2
2(t),a

2
3(t)) in the Bianchi I metric [17]. It is convenient to express the functions

1To specify different components of the cosmic fluid one typically uses a phenomenological relationp = wρ be-
tween the pressure (Lagrangian density)p and the energy densityρ corresponding to each component of the fluid. The
functionw is called the state parameter.
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ai(t) in terms of new functionsa andβi (we use notations from [18]), which are subject to the
constraintβ1 +β2 +β3 = 0. One has the following relations

ai(t) = a(t)eβi(t), hence, a(t) = (a1(t)a2(t)a3(t))1/3. (2.2)

Following [18], we introduce the shear variableσ2≡ β̇ 2
1 + β̇ 2

2 + β̇ 2
3 and get the Einstein equations:

β̈i = −3Hβ̇i ,
d
dt

(
σ

2)= −6Hσ
2, (2.3)

3H2− 1
2

σ
2 = 8πGNρ, 2Ḣ +3H2 +

1
2

σ
2 = −8πGN p, (2.4)

whereH ≡ ȧ/a, a dot denotes a time derivative and

ρ =
C1

2
φ̇

2 +
C2

2
ξ̇

2 +V(φ ,ξ ), p =
C1

2
φ̇

2 +
C2

2
ξ̇

2−V(φ ,ξ ). (2.5)

We also obtain from action (2.1) the following equations:

φ̇ = ψ, ψ̇ = −3Hψ− 1
C1

∂V
∂φ

, ξ̇ = ζ , ζ̇ = −3Hζ − 1
C2

∂V
∂ξ

. (2.6)

Summing equations (2.4) we obtain

Ḣ = −3H2 +8πGNV(φ ,ξ ). (2.7)

3. Sufficient conditions for Lyapunov stability of fixed point

Let us assume that the fieldsφ andξ tend to finite limits att →+∞. System (2.6)-(2.7) has a
fixed pointyf = (H f ,φ f ,ψ f ,ξ f ,ζ f ) if and only if ψ f = 0, ζ f = 0,

V ′
φ ≡

∂V
∂φ

(φ f ,ξ f ) = 0, V ′
ξ
≡ ∂V

∂ξ
(φ f ,ξ f ) = 0, H2

f =
8πGN

3
V(φ f ,ξ f ). (3.1)

The stability of a kink or lump solution means the stability of the fixed point that the solution
tends to. To analyse the stability ofyf we study the stability of this fixed point for the corresponding
linearized system of equations and use the Lyapunov theorem [19]. In the neighborhood ofyf

H(t) = H f + εh1(t)+O(ε2), (3.2)

φ(t) = φ f + εφ1(t)+O(ε2), ψ(t) = εψ1(t)+O(ε2), (3.3)

ξ (t) = ξ f + εξ1(t)+O(ε2), ζ (t) = εζ1(t)+O(ε2), (3.4)

whereε is a small parameter. To first order inε we obtain the following system of equations

ḣ1(t) = −6H f h1(t), (3.5)

φ̇1(t) = ψ1(t), ψ̇1(t) = −3H f ψ1(t)−
1

C1

(
V ′′

φφ φ1(t)+V ′′
φξ

ξ1(t)
)

, (3.6)

ξ̇1(t) = ζ1(t), ζ̇1(t) = −3H f ζ1(t)−
1

C2

(
V ′′

ξ φ
φ1(t)+V ′′

ξ ξ
ξ1(t)

)
, (3.7)

whereV ′′
φφ
≡ ∂ 2V

∂φ2 (φ f ,ξ f ), V ′′
ξ ξ
≡ ∂ 2V

∂ξ 2 (φ f ,ξ f ), V ′′
φξ
≡ ∂ 2V

∂φ∂ξ
(φ f ,ξ f ). Analyzing solutions of (3.5)–

(3.7) we get the sufficient stability conditions of the fixed point [14]:

H f > 0,
V ′′

ξ ξ

C2
+

V ′′
φφ

C1
> 0,

V ′′
ξ ξ

V ′′
φφ

C1C2
>

V ′′
φξ

2

C1C2
. (3.8)
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4. Construction of stable solutions via the superpotential method

Let us consider the superpotential method for two-field models [20, 9, 16] in the FRW met-
ric. We assume that the Hubble parameterH(t) is a function (superpotential) ofφ(t) andξ (t):
H(t) = W(φ(t),ξ (t)), and that functionsφ(t) andξ (t) are solutions of the following system of
two ordinary differential equationṡφ = F(φ ,ξ ), ξ̇ = G(φ ,ξ ), whereF(φ ,ξ ) andG(φ ,ξ ) are such
continuously differentiable function that∂F

∂ξ
= C2

C1

∂G
∂φ

. It is easy to check that equations (2.6)–(2.7)
are solved provided the following relations are satisfied:

∂W
∂φ

= −4πGNC1φ̇ ,
∂W
∂ξ

= −4πGNC2ξ̇ , (4.1)

V =
3

8πGN
W2− 1

32π2G2
N

(
1

C1

(
∂W
∂φ

)2

+
1

C2

(
∂W
∂ξ

)2
)

. (4.2)

The goal of this subsection is to obtain conditions on the superpotentialW, which are equiva-
lent to conditions (3.8) for the corresponding potentialV. At the fixed pointyf = (H f ,φ f ,ψ f ,0,0)

Wf ≡W(φ f ,ξ f ) = H f , W′
φ ≡

∂W
∂φ

(φ f ,ξ f ) = 0, W′
ξ
≡ ∂W

∂ξ
(φ f ,ξ f ) = 0. (4.3)

It is easy to see that from (4.3) it follows that V ′
φ

= 0, V ′
ξ

= 0. The conditionH f > 0 is
equivalent toWf > 0. If W′′

φξ
= 0, thenV ′′

φξ
= 0 and conditions (3.8) are(

12πGNC1Wf −W′′
φφ

)
W′′

φφ > 0,
(

12πGNC2Wf −W′′
ξ ξ

)
W′′

ξ ξ
> 0. (4.4)

In the general case we have the sufficient stability conditions in the following form

12C1C2πGN(C2W
′′
φφ +C1W

′′
ξ ξ

)Wf > C2
2

(
W′′

φφ )2 +2C1C2(W′′
φξ

)2
+C2

1(W
′′
ξ ξ

)2. (4.5)(
144C1C2π2G2

NW2
f −12C1C2πGN(C2W′′

φφ
+C1W′′

ξ ξ
)Wf +W′′

ξ ξ
W′′

φφ
− (W′′

φξ
)2
)
×

×
(
W′′

ξ ξ
W′′

φφ
− (W′′

φξ
)2
)

> 0.
(4.6)

5. String field theory inspired cosmological models

An interest in cosmological models coming from open string field theories [21] is caused by
a possibility to get solutions rolling from a perturbative vacuum to the true one. The dark energy
model [21] assumes that our Universe is a slowly decaying D3-brane and its dynamics is described
by the open string tachyon mode. For the open fermionic NSR string with the GSO(−) sector in a
reasonable approximation, one gets the Mexican hat potential for the tachyon field [22]. Rolling of
the tachyon from the unstable perturbative extremum towards this minimum describes, according
to the Sen conjecture [22], the transition of an unstable D-brane to a true vacuum. In fact one gets a
nonlocal potential with a string scale as a parameter of nonlocality. After a suitable field redefinition
the potential becomes local, meanwhile, the kinetic term becomes non-local. This nonstandard
kinetic term has a so-called phantomlike behavior and can be approximated by a phantom kinetic
term. It has been found that the open string tachyon behavior is effectively modelled by a scalar
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field with a negative kinetic term [23]. The back reaction of this brane is incorporated in the
dynamics of the closed string tachyon. The scalar fieldξ comes from the closed string sector and
its effective local description is given by an ordinary kinetic term.

In the papers [9, 16] quintom models (C1 = −C2 < 0) with effective the sixth degree polyno-
mial potentialsV(φ ,ξ ) have been considered:

V(φ ,ξ ) =
6

∑
k=0

6−k

∑
j=0

ck jφ
k
ξ

j , V(φ ,ξ ) = V(−φ ,−ξ ). (5.1)

From the SFT we can also assume asymptotic conditions for solutions. We assume that the
phantom fieldφ(t) smoothly rolls from the unstable perturbative vacuum (φ = 0) to a nonpertur-
bative one, for exampleφ = A, and stops there. The fieldξ (t) corresponds to close string and is
expected to go asymptotically to zero in the infinite future. In other words we plan to analyse the
stability of solutions, which tends to a fixed point withφ f = A andξ f = 0.

To construct the sixth degree even polynomial potentialV(φ ,ξ ) we can chooseW(φ ,ξ ) as an
arbitrary third degree odd polynomial:

W3(φ ,ξ ) = 4πGN
(
a1,0φ +a3,0φ

3 +a0,1ξ +a0,3ξ
3 +a2,1φ

2
ξ +a1,2φξ

2), (5.2)

whereai, j are constants. Using asymptotic conditions:φ(+∞)= A, ξ (+∞)= 0, φ̇(+∞)= ξ̇ (+∞)=
0 we obtaina1,0 = −3a3,0A2, a0,1 = −a2,1A2. So, we get the following system of equations:

φ̇ =
1

C2

(
3a3,0(φ2−A2)+2a2,1φξ +a1,2ξ

2) , ξ̇ = − 1
C2

(
a2,1(φ2−A2)+3a0,3ξ

2 +2a1,2φξ
)
.

(5.3)
At the fixed pointφ f = A, ξ f = 0 we haveWf = −8πGNa3,0A3. So, the conditions (3.8) are as
follows:

a3,0A < 0, (5.4)

2a2
2,1−a2

1,2−12πGNC2A2a3,0a1,2 +9(4πGNC2A2−1)a2
3,0 > 0, (5.5)

(3a3,0a1,2−a2
2,1)
(
3(4πGNA2C2−1)a3,0a1,2−36πGNA2C2(4πGNA2C2−1)a2

3,0 +a2
2,1

)
< 0.

(5.6)
If a2,1 = 0, thenV ′′

φξ
= 0 and the sufficient conditions for the stability have the following form

a3,0A < 0, 4πGNC2A2 > 1, a1,2(a1,2 +12πGNC2a3,0A2) < 0. (5.7)

The case of superpotentialW3(φ ,ξ ) with a2,1 = 0 anda0,3 = 0 has been considered in [9, 16]. In
this case the system (5.3) has the following form

φ = − C2

2a1,2

ξ̇

ξ
, ξ̈ =

(2a1,2−3a3,0)
2a1,2ξ

ξ̇
2 +

2a1,2

C2
2

ξ
(
3a3,0A2−a1,2ξ

2) . (5.8)

For some values of parameters the general solution of (5.8) can be presented in the explicit
form [16]. Indeed, ata3,0/a1,2 =−1/3 system (5.8) has the following general solution:

φs(t) =
A
(
C2

2e4a1,2At/C2−64a4
1,2C

2
2A2D2

1−4a2
1,2A2D2

2

)
(
C2e2a1,2At/C2−2D2a1,2A

)2 +64D2
1a4

1,2C
2
2A2

, (5.9)
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ξs(t) =
16D1C2

2a2
1,2A2e2a1,2At/C2(

C2e2a1,2At/C2−2D2a1,2A
)2 +64D2

1a4
1,2C

2
2A2

. (5.10)

Let us analyse the stability of the exact solution. One can see thatφs(t) andξs(t) are continuous
functions, which tend to a fixed point att →∞. Therefore, the obtained exact solution is attractive if
and only if the fixed point is asymptotically stable. Ata3,0 = −a1,2/3 we obtain that three stability
conditions (5.7) transform into two independent conditionsa1,2A > 0 and 4πGNA2C2 > 1.

6. Conclusion

We have analysed the stability of isotropic solutions for two-field models. Using the Lyapunov
theorem we have found sufficient conditions of stability of kink-type and lump-type isotropic so-
lutions for two-field models in the Bianchi I metric. The obtained results allow us to prove that the
exact solutions, found in string inspired phantom models [9, 16], are stable.

We have presented the algorithm for construction of kink-type and lump-type isotropic ex-
act stable solutions via the superpotential method. In particular we have formulated the stability
conditions in terms of superpotential.

Our study of the stability of isotropic solutions for quintom models in the Bianchi I metric
shows that the NEC is not a necessary condition for classical stability of isotropic solutions. In
this paper we have shown that the models [9, 16] have stable isotropic solutions and that large
anisotropy does not appear in these models. It means that considered models are acceptable, be-
cause they do not violate limits on anisotropic models, obtained from the observations [2, 3].

The authors are grateful to I.Ya. Aref’eva for stimulating discussions. This work is supported
in part by RFBR grant 08-01-00798. The authors are supported in part by grants of Russian Min-
istry of Education and Science NSh-8265.2010.1 (N.B.) and NSh-4142.2010.2 (S.V.). S.V. is sup-
ported in part by Federal Agency for Science and Innovation under state contract 02.740.11.0244.
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