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Since its discovery in 2004, graphene, a two-dimensional hexagonal carbon allotrope, has gen-

erated great interest and spurred research activity from materials science to particle physics and

vice versa. In particular, graphene has been found to exhibit outstanding electronic and mechan-

ical properties, as well as an unusual low-energy spectrum of Dirac quasiparticles giving rise to

a fractional quantum Hall effect when freely suspended and immersed in a magnetic field. One

of the most intriguing puzzles of graphene involves the low-temperature conductivity at zero den-

sity, a central issue in the design of graphene-based nanoelectronic components. While suspended

graphene experiments have shown a trend reminiscent of semiconductors, with rising resistivity at

low temperatures, most theories predict a constant or even decreasing resistivity. However, lattice

field theory calculations have revealed that suspended graphene is at or near the critical coupling

for excitonic gap formation due to strong Coulomb interactions, which suggests a simple and

straightforward explanation for the experimental data. Inthis contribution we review the current

status of the field with emphasis on the issue of gap formation, and outline recent progress and

future points of contact between condensed matter physics and Lattice QCD.
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1. Introduction

The recent experimental isolation of single atomic layers of graphite, known as graphene, has
provided physicists with a novel opportunity to study a system with remarkable electronic and
many-body properties, which is easy to manipulate experimentally [1, 2]. Even more recently,
the advent of experiments utilizing samples of suspended graphene, free from the interference of
an underlying substrate [3], has provided unprecedented insight into the intrinsic properties of
graphene. Among other remarkable discoveries, suspended graphene has been found to exhibit
a carrier mobility which exceeds that of silicon by an order of magnitude, a fractional quantum
Hall effect which is indicative of strong electron-electron interactions, as well as a markedly non-
metallic behavior of the DC conductivity at low temperatures.

A central property of graphene is that the low-energy electronic spectrum can be described
in terms of two flavors of massless, four-component fermionic quasiparticles with linear disper-
sion [4]. Indeed, due to the hexagonal honeycomb arrangement of the carbon atoms in the graphene
lattice, the band structure of graphene exhibits two inequivalent (but degenerate) “Dirac cones”
where the conduction and valence bands touch. Since the energy-momentum relation around a
Dirac point is linear as in relativistic theories, the low-energy description of graphene bears a cer-
tain resemblance to massless Quantum Electrodynamics (QED). Nevertheless, an important differ-
ence is that the Fermi velocity of the quasiparticles in graphene is as low asvF ≃ c/300, whereby
the electromagnetic interaction is rendered essentially instantaneous. However, it should be pointed
out that such a value ofvF is actually unusually large from a condensed matter point ofview.

Such an unusual band structure (often referred to as semimetallic) accounts fairly well for
the observed properties of graphene sheets deposited on a dielectric substrate. While suspended
graphene has recently come under intense experimental investigation [3], its spectrum is yet to
be computed in a controlled fashion. From a theoretical perspective, the challenging feature of
suspended graphene lies in the smallness of the dieletric constantε = ε0 which, in conjunction
with the small value ofvF , results in a graphene analogue of the fine-structure constant αg & 1. At
such strong coupling, a dynamical transition into a phase fundamentally different from the weakly-
coupled semimetallic phase of graphene is a strong possibility. In graphene sheets deposited on a
substrate, such a transition is effectively inhibited due to the suppression ofαg by the dielectric.

2. Low-energy effective theory

The electronic band structure of graphene close to the Fermilevel forms the basis of the low-
energy effective theory of graphene. This band structure isa reflection of the hexagonal arrange-
ment of the carbon atoms, which can be decomposed into two triangular sublatticesA andB. This
leads to the tight-binding model

H = −t ∑
〈i, j〉,σ=↑,↓

(

a†
σ ,ibσ , j +h.c.

)

− t ′ ∑
〈〈i, j〉〉,σ=↑,↓

(

a†
σ ,iaσ , j +b†

σ ,ibσ , j +h.c.
)

, (2.1)

where the operatorsa†
σ ,i(aσ ,i) andb†

σ ,i(bσ ,i) create (annihilate) an electron of spinσ at locationi on
sublatticesA andB, respectively. The first term (involvingt) takes into account nearest-neighbor
interactions (as first done by Wallace in Ref. [5]), and the second term (involvingt ′) the next-
to-nearest neighbor ones. The hopping parameters that givean optimal fit to the experimentally
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determined band structure of graphene aret ≃ 2.8 eV andt ′ ≃ 0.1 eV [6]. The tight-binding model
with nearest-neighbor hopping can be generalized to a hexagonal Hubbard model by addition of
an on-site Coulomb repulsion term, which has been recently studied [7] within a Quantum Monte
Carlo approach.

We shall follow a somewhat different route based on an Effective Field Theory (EFT) treatment
of graphene [8, 9], which has the advantage of describing thephysics of graphene directly in terms
of the relevant low-energy degrees of freedom, namely charged massless fermionic quasiparticles.
The EFT description of graphene has an additional advantageas it allows for the direct study of
effects due to the unscreened, long-range Coulomb interactions between the quasiparticles. In
what follows, we shall formulate acontinuumLagrangian field theory valid at low momenta, much
smaller than the inverse of the interatomic distance∼ 1.42 Å.

2.1 Continuum formulation

The low-energy EFT of graphene may be derived from a tight-binding or Hubbard model
description augmented by a long-range Coulomb interaction[9], yielding a theory ofNf Dirac
flavors interacting via an instantaneous Coulomb interaction. The action (in Euclidean spacetime)
of this theory is

SE = −

Nf

∑
a=1

∫

d2xdt ψ̄a D[A0]ψa +
1

2g2

∫

d3xdt(∂iA0)
2, (2.2)

whereNf = 2 for graphene monolayers,g2 = e2/ε0 for graphene in vacuum (suspended graphene),
ψa is a four-component Dirac field in (2+1) dimensions,A0 is a Coulomb field in (3+1) dimensions,
and

D[A0] = γ0(∂0 + iA0)+vFγi∂i , i = 1,2 (2.3)

where the Dirac matricesγµ satisfy the Euclidean Clifford algebra{γµ ,γν} = 2δµν . The four-
component spinor structure accounts for quasiparticle excitations of sublatticesA and B around
the two Dirac points in the band structure [4, 9]. The two Dirac points are identified with the
two inequivalent representations (with opposite parity) of the Dirac matrices in (2+1) dimensions.
In graphene monolayers,Nf = 2 owing to electronic spin, whileNf = 4 is related to the case of
two decoupled graphene layers, interacting solely via the Coulomb interaction. Consideration of
arbitraryNf is also useful, given that an analytic treatment [10] is possible in the limitNf → ∞.

The strength of the Coulomb interaction is controlled byαg = e2/(4πvF ε0), which is the
graphene analogue of the fine-structure constantα ≃ 1/137 of QED. It is straightforward to show
thatαg is the only parameter, by rescaling according to

t ′ = vFt, A′
0 = A0/vF . (2.4)

The action (2.2) is invariant under spatially uniform gaugetransformations (see Sec. 3.1). Notice
that since theA0 field is (3+1)-dimensional, a four-fermion Coulomb interaction of the form

ψ̄a(x)γ0ψa(x) ψ̄b(x
′)γ0ψb(x

′)

|x−x′|
(2.5)

is recovered by integrating outA0. Nevertheless, for our purposes the original form of the action
(quadratic in the fermions) as given in Eq. (2.2) is preferable.
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A central property of the low-energy EFT is that Eq. (2.2) respects a global U(2Nf ) chiral
symmetry under the transformations

ψa → exp(iΓ jα j)ψa (2.6)

where the matricesΓ j are the(2Nf )
2 hermitian generators of U(2Nf ), such that for the case of

graphene monolayers, the group is U(4). It should be noted that the choice of any particular
representation for theΓ j is completely arbitrary and is not necessary for any calculational purpose,
as all relevant information is provided by the Clifford algebra. However, the identification of the
spinor degrees of freedom with any particular Dirac point and graphene sublattice is dependent on
the chosen representation. This U(4) chiral symmetry, which strictly speaking is a flavor symmetry,
can be spontaneously broken down to U(2)×U(2), in which case the excitonic condensate〈ψ̄ψ〉

acquires a non-vanishing value, signaling the formation ofquasiparticle-hole bound states. The
same group structure is obtained by adding to Eq. (2.2) a parity invariant (Dirac) mass term

∫

d2xdt m0ψ̄aψa, (2.7)

which breaks the symmetry explicitly. For the extended theory with Nf flavors, the symmetry
breaking pattern is U(2Nf ) →U(Nf )×U(Nf ). Other symmetry breaking patterns, involving the
possibilites of magnetic as well as Cooper-like pairing instabilities, have been investigated in
Refs. [9, 11].

2.2 Effective action and probability measure

The partition function corresponding to Eq. (2.2) is given by

Z =

∫

DA0DψDψ̄ exp(−SE[ψ̄a,ψa,A0]), (2.8)

where it is possible to integrate out the fermionic degrees of freedom, asSE is quadratic in theψa.
We thus obtain

Z =
∫

DA0 exp(−Sg
E[A0]) det(D[A0])

Nf , (2.9)

where
Sg

E =
1

2g2

∫

d3xdt(∂iA0)
2 (2.10)

is the pure gauge part of the action. It is of central importance for the convergence of the Monte
Carlo algorithm that the above determinant has a definite sign, independently of any particular
configuration of the gauge fieldA0. One way to establish this property is to proceed by writing
D[A0] in the form

D[A0] =

(

M[A0] 0
0 −M[A0]

)

=

(

M[A0] 0
0 M†[A0]

)

, (2.11)

where
M[A0] = σ0(∂0 + iA0)+vFσi∂i, i = 1,2, (2.12)

which entails a specific choice of Diracγ-matrices. Furthermore, we note thatA0 is real, and that
the Pauli matrices and the momentum operator are hermitian.The latter implies∂ †

µ = −∂µ , and
therefore

det(D) = det(M)det(M†) = |det(M)|2 > 0. (2.13)
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While this property is not affected by the introduction of a parity invariant mass term such as
Eq. (2.7), the positivity of det(D) breaks down in the presence of a chemical potential.

The fact that det(D) is positive definite allows for the definition of an effectiveaction that is
purely real, given by

Seff[A0] = −Nf lndet(D[A0])+Sg
E[A0], (2.14)

so that the partition function becomes

Z =

∫

DA0 exp(−Seff[A0]), (2.15)

whereP[A0] = exp(−Seff[A0]) > 0 can be interpreted as a positive definite probability measure for
a Monte Carlo calculation, as outlined in Section 3.

2.3 Operator expectation values

The expectation value of a given operatorO[ψ̄,ψ ] dependent on the fermion fields can be
calculated by taking functional derivatives of the generating functional

Z[η̄,η ] =

∫

DA0DψDψ̄ exp(−SE[A0, ψ̄ ,ψ , η̄ ,η ]), (2.16)

where source terms have been added to the original action according to

SE[A0, ψ̄ ,ψ , η̄ ,η ] = SE[A0, ψ̄ ,ψ ] +

∫

d2xdt(ψ̄η +h.c.), (2.17)

such that the modified effective gauge action is a functionalof A0 as well as of the sourcesη , η̄. It
is again possible to integrate out the fermionic degrees of freedom and take functional derivatives
with respect to the sources in the resulting expression

Z[η̄,η ] ∝
∫

DA0 exp(−Seff[A0]) exp

(

−

∫

d2xdtη̄D−1[A0]η
)

, (2.18)

which makes it possible to obtain expectation values in terms of a path integral overA0 only. While
this procedure is completely general, it is possible to employ a slightly different approach in order
to facilitate the computation of the chiral condensate and susceptibility.

The chiral condensateσ , which is the order parameter of the semimetal-insulator phase tran-
sition in graphene, is defined by

σ ≡ 〈ψ̄bψb〉, (2.19)

where the fermion fields are evaluated at the same space-timepoint. It is useful to note that the
massm0 plays the rôle of a source, coupled tōψbψb. The expectation value of this operator can
therefore be obtained by first differentiating the partition function with respect tom0 and dividing
by the volume, giving

σ =
1

VZ

∫

DA0DψDψ̄
∫

d2xdtψ̄b(x, t)ψb(x, t) exp(−SE) =
1
V

∂ lnZ
∂m0

, (2.20)

whereσ has been defined as an average over the lattice volume occupied by the fermions. On the
other hand, once the fermions have been integrated out, the derivative with respect tom0 yields

σ =
1

VZ

∫

DA0 Tr(D−1[A0]) exp(−Seff[A0]) =
1
V

〈

Tr(D−1[A0])
〉

, (2.21)

5
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where the identities

det(D[λ ]) = exp(Tr(log(D[λ ])),
∂ det(D[λ ])

∂λ
= det(D[λ ])Tr

(

D−1[λ ]
∂D
∂λ

)

, (2.22)

have been used. The chiral susceptibilityχl may be found by taking one more derivative with
respect tom0, giving

χl ≡
∂σ
∂m0

=
1
V

[

〈

Tr2(D−1)
〉

−
〈

Tr(D−2)
〉

−
〈

Tr(D−1)
〉2
]

, (2.23)

which is expected to diverge at a second-order phase transition, and may also yield constraining
information on the universal critical exponents of the transition.

3. Graphene on the lattice

In this section we formulate the lattice version of Eq. (2.2)following Refs. [12, 13]. It should
be noted in this context that a closely related lattice modelof the strong-coupling limit of graphene
has been considered in Ref. [14]. We begin by discretizing the pure gauge sector, where the require-
ment of gauge invariance implies the use of “link variables”to represent the gauge degrees of free-
dom. The “staggered” discretization of the fermionic sector is then outlined, as it is the preferred
choice to represent fermions with chiral symmetry at finite lattice spacing [15, 16]. Throughout
this paper, the lattice spacing is set equal to unity, and thus all dimensionful quantities should be
regarded as expressed in units of the lattice spacing.

3.1 Gauge invariance and link variables

The pure gauge part of the Euclidean action, Eq. (2.10), can be thought of as the non-relativistic
limit of the Lorentz-invariant form1

4FµνFµν whereFµν = ∂µAν −∂νAµ , such that

FµνFµν = F0 jF
0 j +Fi j F

i j +Fi0F
i0 = 2F0 jF

0 j = 2(∂ jA0)
2, (3.1)

where we have usedFi j = 0 (no magnetic field) and∂0A j = 0 (no electric field induction by a mag-
netic field), valid in the non-relativistic limit (vF ≪ c). Thus, for graphene the only non-vanishing
contribution is the electric fieldE j = −∂ jA0, which represents the instantaneous Coulomb interac-
tion between the quasiparticles.

The gauge action (2.10) is invariant under the time-dependent, spatially uniform gauge trans-
formations

A0 → A0+ α(t), ψ → exp

{

i
∫ t

0
dt′α(t ′)

}

ψ , (3.2)

whereα(t) is a function of time only. Thus, in spite of its apparent simplicity, the effective theory of
graphene possesses a truly local gauge invariance, which should be respected by the lattice action.
To this end, one introduces temporal link variables

U0,n = Un ≡ exp(iθn) , (3.3)

whereθn is the dimensionless lattice gauge field evaluated at the lattice pointn = (n0,n1,n2,n3).
The spatial link variables

Ui,n = 1 (3.4)

6
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are set to unity. It is convenient to express the discretizedversion of Eq. (2.10) in terms of “plaque-
tte” variables, defined by

Uµν ,n = Uµ ,nUν ,n+eµ
U†

µ ,n+eν
U†

ν ,n, (3.5)

where, in the present case of a pure Coulomb interaction, theonly non-trivial components areU0i

andUi0. Those plaquette components then correspond to the discretized formulation of the electric
field. The remaining components corresponding to the magnetic field are equal to unity. These
statements can be summarized in the expression

Uµν ,n = δµ0δν i UnU†
n+ei

+ δν0δµ i U
†
nUn+ei

+ δµ0δν0+ δµ iδν j . (3.6)

In terms of the gauge link variables and plaquettes, the discretized gauge action corresponding
to Eq. (2.10) is given by [17]

Sg
E = β ∑

n
∑

µ>ν

[

1−
1
2

(

Uµν ,n +U†
µν ,n

)

]

, (3.7)

whereβ = 1/g2, such thatβ → vF/g2 when the rescaling of Eq. (2.4) is applied. In Eq. (3.7), the
only non-vanishing contributions arise from the terms with(µ ,ν) = (1,0);(2,0);(3,0);(2,1);(3,1)

and(3,2). Eq. (3.7) may be simplified to

Sg
E,C = β ∑

n

[

3−
3

∑
i=1

ℜ
(

UnU
†
n+ei

)

]

, (3.8)

whereℜ(x) denotes the real part ofx. Eq. (3.8) is referred to as the compact formulation, which
has been found to pose problems related to spurious monopolecondensation in QED and related
theories [18]. On the other hand, the non-compact formulation, which is obtained from Eq. (3.8)
by expandingℜ(UnU†

n+ei
) to second order inθ ,

ℜ
(

UnU†
n+ei

)

= 1−
1
2

(

θn+ei
−θn

)2
+ . . . (3.9)

giving

Sg
E,N =

β
2 ∑

n

3

∑
i=1

(

θn+ei
−θn

)2
, (3.10)

is free from such problems [16, 19] and allows for a realisticcontinuum limit.

3.2 Staggered fermions

While the discretization of the gauge sector is relatively straightforward, the inclusion of dy-
namical fermions on the lattice is a notoriously difficult problem. One of the main issues when
simulating fermions on the lattice is the so-called doubling problem (for an overview, see Ref. [17],
Chapter 4). This problem is related to the chiral invarianceof the fermionic sector, and arises due to
the appearance of multiple (unwanted) zeros in the inverse propagator. In other words, one is simu-
lating more fermion flavors than expected, the exact number being dependent on the dimensionality
of the theory. There exists a number of ways to avoid the doubling problem, but all of them break
chiral invariance in one way or the other, a fact encoded in the Nielsen-Ninomiya theorem [20].

7
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The solution we have chosen for our simulations of graphene is the “staggered” discretization of
Ref. [21]. This choice is advantageous for the study of spontaneous chiral symmetry breaking in
graphene, as it yields the correct number of degrees of freedom while (partially) preserving chiral
symmetry. The major drawback of staggered fermions is that the full chiral symmetry is restored
only in the continuum limit, a fact referred to as “taste symmetry breaking”.

In order to discretize the fermionic sector of Eq. (2.2) in a way amenable to computer simu-
lations, a number of choices need to be made. As a first step, fermions are integrated out, and the
partition function is written purely in terms of the gauge field, Eq. (2.15). The fermions are then
represented exclusively through det(D). One can then attempt to compute the determinant exactly
for a givenθ configuration, which is feasible due to the low dimensionality of the problem, Alter-
natively, one may rewrite det(D) in terms of a path integral over complex scalar fields referred to
as pseudofermions, as is common in Lattice QCD.

It has been shown in Ref. [22] that for each staggered flavor one recovers, in the continuum
limit, two four-component Dirac flavors. Thus, by retainingone staggered flavor, it is possible
to have exactly eight continuum fermionic degrees of freedom, which is the correct number for
graphene. The action of a single staggered flavor is given by

Sf
E[χ̄ ,χ ,θ ] = −∑

n,m
χ̄n Kn,m[θ ]χm, (3.11)

where the staggered Dirac operator is

Kn,m[θ ] =
1
2
(δn+e0,m

Un −δn−e0,m
U†

m)+
vF

2 ∑
i

η i
n(δn+ei ,m

−δn−ei ,m
)+m0δn,m, (3.12)

where the phase factorsη arise from the spin-diagonalization of the Dirac matrices [23]. The op-
eratorK thus replacesD in all expressions for the probability, chiral condensate and susceptibility
that were derived in the previous sections. As expected fromthe Nielsen-Ninomiya theorem, the
staggered lattice action does not retain the full U(4) chiral symmetry of the original graphene ac-
tion at finite lattice spacing. As shown in Ref. [22], only a subgroup U(1)×U(1) remains upon
discretization. Spontaneous condensation ofχ̄χ , or equivalently the introduction of a parity invari-
ant mass term, reduces this symmetry to U(1).

Finally, it should be pointed out that the situation concerning graphene is unusually favorable,
in the sense that the staggered formalism fortuitously provides the correct number of fermionic
degrees of freedom, asNf = 2 for graphene monolayers. In general, staggered fermions provide
only a compromise solution in the sense that some degree of chiral symmetry is preserved, at the
price of retaining some of the doubling originally present in the discretized fermion action. Indeed,
if the case ofNf = 1 were to be simulated, it would be necessary to resort to the controversial
“rooting” trick [24], whereby the desired number of continuum flavors is restored by taking the
appropriate root of the Dirac operator.

4. Results for βc

The results presented in this work for the non-compact gaugeaction are partly based on the
reanalysis of extant data from Ref. [12] and partly on new data on larger lattices. These datasets

8
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Figure 1: Result of a simultaneous fit toσ (left panel),χl (middle panel) andR (right panel). Red symbols
indicate data forNx = 28, the remaining ones are forNx = 32. The datapoints forR are grouped according
to β−1. The fit range has been restricted such that data withm0 > 0.005 andβ < 0.1 are excluded, as data at
largem0 and smallβ have substantial finite volume effects. The optimal parameters areβc = 0.0774(2) and
δ = 2.93(2), with b = 1.0 fixed. The data satisfyb = 1 very accurately. The error bars on the datapoints are
obtained via the Jackknife method [25].

correspond toNt = Nx = 28 and 32, with the extent of the bulk dimensionNb set at either 12 or 32.
We find that finite-size effects are most pronounced as functions ofNt andNx at smallβ , while the
effect ofNb on the results is negligible. Our analysis proceeds by first determining the condensate
σ , susceptibilityχl andR≡ χl m0/σ as a function ofβ andm0. The second step of the analysis
consists of fitting an equation of state (EOS) toσ andχl in order to obtain estimates of the critical
couplingβc and the critical exponents. Our EOS is of the form

m0X(β ) = Y(β )σb + σ δ , (4.1)

where the exponentb ≡ β̄ − 1/δ . This form has been used previously in the context of Lattice
QED in (3+1) dimensions [26]. Here, we have referred to the critical exponent using the notation̄β
to avoid confusion with the inverse couplingβ . The dependence on the critical couplingβc enters
through the expansions

X(β ) = X0+X1

(

1−
β
βc

)

+ . . . , Y(β ) = Y1

(

1−
β
βc

)

+ . . . , (4.2)

where terms up toX1 andY1 have been retained. Higher-order terms were found to have a very
small effect on the analysis, and have thus been discarded.

We find that a simultaneous fit to all data forσ , χl andR yields the most stable results. It
is also necessary to carefully consider finite-volume effects and the impact they have on the fit
parameters. We have therefore excluded datapoints withm0 > 0.005 andβ < 0.1. In this way, we
find consistency with mean-field exponents,δ = 3 andb = 1. Including data at lowerβ and larger
m0 suggestsδ ∼ 2.2, however such fits have a much higherχ2 and compare unfavorably with the
data onR. We find thatNx = 28 andNx = 32 give consistent results using the restricted dataset.

9
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5. Experimental situation

We now turn to the question whether experiments which measure the DC conductivity of sus-
pended graphene provide any evidence for semiconducting behavior which would follow naturally
from the excitonic gap scenario. While a full LMC calculation of the conductivity is not yet avail-
able, a simplified analysis in terms of a Kubo description of gapped quasiparticles has recently
been given in Ref. [27], where the data of Ref. [28] on the suspended graphene devices “S1”, “S2”
and “S3” were analyzed in terms of the expressionσ ≡ σq + σbg. Hereσq is the quasiparticle
contribution intrinsic to graphene, while the “background” componentσbg is device-dependent.

The Hamiltonian describing Dirac quasiparticles with a gap∆ and Fermi velocityvF ≃ c/300
is given byH ≡ σ1vFk1+σ2vFk2+σ3∆/2, where theσi are Pauli matrices. The contributionσq of
the Dirac quasiparticles to the DC conductivity of a graphene monolayer is then

σq ≡
4e2

h
π
2

∫ ∞

−∞
dε
∫ ∞

∆/2
dξ ξTω(ξ ,ε)

f (βε − βω
2 −β µ)− f (βε + βω

2 −β µ)

ω
, (5.1)

whereβ ≡ 1/kBT, the Fermi function is given byf (x) = 1/(1+ exp(x)), µ denotes the chemical
potential and the factor of 4 accounts for the spin and valleydegrees of freedom. Then

Tω(ξ ,ε) =
ξ 2+ ∆2/4

ξ 2

[

δη

(

ξ + ε +
ω
2

)

δη

(

ξ − ε +
ω
2

)

+ δη

(

ξ + ε −
ω
2

)

δη

(

ξ − ε −
ω
2

)]

+
ξ 2−∆2/4

ξ 2

[

δη

(

ξ − ε −
ω
2

)

δη

(

ξ − ε +
ω
2

)

+ δη

(

ξ + ε +
ω
2

)

δη

(

ξ + ε −
ω
2

)]

,

(5.2)

whereη is the scattering rate of the quasiparticles, which can be accounted for [29] by broadening
the delta functions according toπδη(x) ≡ η/(x2 + η2). In the DC limit, the integral overξ in
Eq. (5.1) yields

∫ ∞

∆/2
dξ ξ T0(ξ ,ε) =

1
2π

−
∆2−4|z|2

16πεη
arg
(

∆2−4z2) , (5.3)

wherez≡ ε + iη .
The inclusion of the background componentσbg is motivated by the fact that the minimal

conductivity in graphene samples is non-universal. In suspended graphene, it is much smaller than
in graphene samples on a substrate and furthermore stronglysample-dependent. There is also a
clear tendency of the minimal conductivity to decrease withincreasing sample purity [30]. It is
likely that the minimal conductivity in graphene is formed of several components, including the
effects of impurities [31], inhomogeneity [32] and effectsdue to invasive metallic contacts [33]. In
our analysis, we have used the phenomenological form

σbg ≡ σ0 exp[−(T0/T)α ], (5.4)

which allows for the slight empiricalT-dependence ofσbg. The empirical data of Ref. [28] is shown
in Fig. 2, together with fits in terms ofσq andσbg. It is noteworthy that the data display a distinct
“knee” at∼ 30 K, which in terms of the present description is interpreted as the temperature below
which thermal activation is negligible. Thus, in order to determineσbg in an unbiased fashion, we
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Figure 2: Left panel: quasiparticle (QP) and background (BG) components ofσ(n= 0,T) for the suspended
graphene devices S1–S3, as determined in Ref. [27]. The empirical data is reproduced from Ref. [28].
All devices show a “knee" separating thermally activated and background regions. Right panel:σ(n,T)

determined from a fit toσ(n = 0,T) and the resistivityρ(n,T), reproduced from Ref. [27].

first fix σ0 andT0 using data in the extreme low-T region. One may then subtractσbg at all T,
and determineβη and∆ by fitting σq to the resulting dataset. A simultaneous fit ofσq andσbg

confirms the validity of this procedure. Whileη(T) is a priori unknown, a scenario of constantβη
is strongly favored by the available data in the range 35 K≤ T ≤ 150 K.

Our findings in Ref. [27] suggest that the suspended graphenedevices of Ref. [28] exhibit a
thermally activated conductivityσq, which is well described by Eq. (5.1) fromT ∼ 150 K down to
T ∼ 35 K, where the signal is lost due to limited measurement accuracy. The determined bandgaps
are in the range∆ ∼ 25− 40 meV, whereas all samples were found to favorβη ≃ 0.1 indicat-
ing a scattering rate which increases linearly withT. A natural scattering mechanism with such
properties is provided by the long-range Coulomb interaction [34] up to logarithmic corrections.
Furthermore, this value ofβη is consistent with the high carrier mobilities and long meanfree
paths reported in Ref. [28], as well as with theoretical estimates of the mean free path due to long-
range Coulomb scattering [34]. Specifically, forT = 35− 150 K we findη = 3.5− 15 K, with
corresponding mean free paths ofh̄vF/η ∼ 0.5−2.0 µm. Fits with no gap (∆ = 0), constantη , or
zero background were found to be incompatible with data.

As shown in Fig. 2, these conclusions are consistent with theobservedσ(n), which depends
sensitively on the value ofβη determined from data atn = 0. Furthermore, the interpretation
of the observedσ(n,T) as due to thermal activation accounts, in a natural way, for the observed
transitional densityn∗ above whichσ(T) reverts from insulating to metallic. The determined
scattering rateη(T) is also suggestive of long-range Coulomb scattering, whichis consistent with
the ultrapure character of the suspended graphene samples of Ref. [28].
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6. Conclusions

We have reviewed the Lattice Gauge Theory approach to the low-energy EFT of graphene,
with the aim of introducing this technique to a wider audience and motivate the application of
this approach to systems beyond monolayer graphene. Our calculations within this the graphene
EFT indicate that it displays a chiral phase transition at a critical coupling ofβc = 0.0774(2), with
critical exponents that appear consistent with mean-field theory. Spontaneous chiral symmetry
breaking in the graphene EFT would lead to the appearance of agap in the quasiparticle spectrum,
directly linked to the formation of quasiparticle-hole pairs (excitons). It is conceivable that such a
transition occurs in suspended graphene, where the strength of the Coulomb interaction attains its
maximum value.

In an effort to clarify whether currently available experimental data on suspended graphene
provide any evidence for the excitonic scenario, we have reviewed the status of such measure-
ments, which show a definite (though relatively mild) insulating trend at lowT in the vicinity
of the neutral point. We have presented an interpretation ofthe observed anomalous temperature
dependence in terms of the excitonic gap scenario, and tentatively found that the data may be
consistently explained in terms of gapped Dirac quasiparticles (∆ ∼ 30 meV) with the long-range
Coulomb interaction as a natural candidate for the dominantscattering mechanism. Further experi-
mental studies of the conductivity at lowT in suspended graphene are clearly called for, preferably
minimizing the effects of invasive metallic contacts.

Further investigations using the Lattice Gauge Theory approach are in progress, including
the renormalization ofvF due to the Coulomb interaction, the magnetic catalysis of a semimetal-
insulator transition at large external magnetic fields [35,36], and the critical temperature for exci-
ton condensation in graphene bilayers [37]. The computation of transport properties involves the
extraction of spectral functions in Minkowski spacetime from Euclidean time lattice data. Such
calculations are also feasible nowadays, as Bayesian analysis coupled with the Maximum Entropy
Method has been successfully applied to QCD [38]. Areas of interest include the electrical con-
ductivity and viscosity [39] of the quasiparticles in graphene. Due to the flexibility of the Lattice
Monte Carlo and Quantum Monte Carlo methods, further applications are likely to arise in the
closely related fields of graphene nanowires, high-Tc superconductors and hexagonal optical lat-
tices, to name a few. In summary, the application of Lattice Gauge Theory to condensed matter
problems appears poised to develop into a highly fruitful field of study.
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