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1. Introduction

The recent experimental isolation of single atomic layérgraphite, known as graphene, has
provided physicists with a novel opportunity to study a egstwith remarkable electronic and
many-body properties, which is easy to manipulate experiatly [1, 2]. Even more recently,
the advent of experiments utilizing samples of suspendedhgne, free from the interference of
an underlying substrate [3], has provided unprecedentsighihinto the intrinsic properties of
graphene. Among other remarkable discoveries, suspendgthane has been found to exhibit
a carrier mobility which exceeds that of silicon by an ordermagnitude, a fractional quantum
Hall effect which is indicative of strong electron-electrmteractions, as well as a markedly non-
metallic behavior of the DC conductivity at low temperagire

A central property of graphene is that the low-energy etentr spectrum can be described
in terms of two flavors of massless, four-component ferntiapiasiparticles with linear disper-
sion [4]. Indeed, due to the hexagonal honeycomb arrangeohére carbon atoms in the graphene
lattice, the band structure of graphene exhibits two inedent (but degenerate) “Dirac cones”
where the conduction and valence bands touch. Since thgyemamentum relation around a
Dirac point is linear as in relativistic theories, the loweegy description of graphene bears a cer-
tain resemblance to massless Quantum Electrodynamics YQERertheless, an important differ-
ence is that the Fermi velocity of the quasiparticles in besye is as low ag- ~ ¢/300, whereby
the electromagnetic interaction is rendered essentiatantaneous. However, it should be pointed
out that such a value of is actually unusually large from a condensed matter pointesf.

Such an unusual band structure (often referred to as sealiiteticcounts fairly well for
the observed properties of graphene sheets deposited ateatdc substrate. While suspended
graphene has recently come under intense experimentatigeton [3], its spectrum is yet to
be computed in a controlled fashion. From a theoreticalpeets/e, the challenging feature of
suspended graphene lies in the smallness of the dieletnistanate = &, which, in conjunction
with the small value of/, results in a graphene analogue of the fine-structure aunsfa’, 1. At
such strong coupling, a dynamical transition into a phaesddmentally different from the weakly-
coupled semimetallic phase of graphene is a strong passibil graphene sheets deposited on a
substrate, such a transition is effectively inhibited dughe suppression af, by the dielectric.

2. Low-energy effective theory

The electronic band structure of graphene close to the Heuliforms the basis of the low-
energy effective theory of graphene. This band structueereflection of the hexagonal arrange-
ment of the carbon atoms, which can be decomposed into tamguiar sublatticed andB. This
leads to the tight-binding model

H=-t 5 (albo+he)—t T (a}a+blbe;+he), (2.1)
(i.,j)o=1.1 ((i,0)),0=1.1
where the operatom;i (ag;) andb‘;i(baii) create (annihilate) an electron of sgirat locationi on
sublatticesA andB, respeCtiver. The first term (involving takes into account nearest-neighbor
interactions (as first done by Wallace in Ref. [5]), and theose term (involvingt’) the next-
to-nearest neighbor ones. The hopping parameters thatgivgptimal fit to the experimentally
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determined band structure of graphenetare2.8 eV andt’ ~ 0.1 eV [6]. The tight-binding model
with nearest-neighbor hopping can be generalized to a leaehdlubbard model by addition of
an on-site Coulomb repulsion term, which has been recetuttlied [7] within a Quantum Monte
Carlo approach.

We shall follow a somewhat different route based on an Effeétield Theory (EFT) treatment
of graphene [8, 9], which has the advantage of describingltlgsics of graphene directly in terms
of the relevant low-energy degrees of freedom, namely @tbngassless fermionic quasiparticles.
The EFT description of graphene has an additional advargagdeallows for the direct study of
effects due to the unscreened, long-range Coulomb interscbetween the quasiparticles. In
what follows, we shall formulate eontinuumlLagrangian field theory valid at low momenta, much
smaller than the inverse of the interatomic distanck42 A.

2.1 Continuum formulation

The low-energy EFT of graphene may be derived from a tightibg or Hubbard model
description augmented by a long-range Coulomb interad®pnyielding a theory ofN; Dirac
flavors interacting via an instantaneous Coulomb intesactlhe action (in Euclidean spacetime)
of this theory is

N; B 1
S=-3 | dxt B DI Yt 55 [ axalt (02 (2.2)

whereN; = 2 for graphene monolayerg? = e2/s0 for graphene in vacuum (suspended graphene),
y, is a four-component Dirac field in (2+1) dimensioAg,is a Coulomb field in (3+1) dimensions,
and

D[A)) = Wo(Fp+1Ag) +Veya, 1=12 (2.3)

where the Dirac matriceg, satisfy the Euclidean Clifford algebrgy,, v, } = 24,,. The four-
component spinor structure accounts for quasiparticletaians of sublattices\ and B around
the two Dirac points in the band structure [4, 9]. The two Dimints are identified with the
two inequivalent representations (with opposite parifythe Dirac matrices in (2+1) dimensions.
In graphene monolayer$\; = 2 owing to electronic spin, whil&l; = 4 is related to the case of
two decoupled graphene layers, interacting solely via tbel@nb interaction. Consideration of
arbitraryN; is also useful, given that an analytic treatment [10] is fibssn the limitN; — co.

The strength of the Coulomb interaction is controlled dyy= €?/(4nvg &), which is the
graphene analogue of the fine-structure constart1/137 of QED. It is straightforward to show
thatay is the only parameter, by rescaling according to

t'=vet, AG=Ay/Ve. (2.4)

The action (2.2) is invariant under spatially uniform gatigemsformations (see Sec. 3.1). Notice
that since the\, field is (3+1)-dimensional, a four-fermion Coulomb interew of the form

Wa(X) YoWa(X) Yo (X) Yo (X))
X —X|

(2.5)

is recovered by integrating o#,. Nevertheless, for our purposes the original form of théoact
(quadratic in the fermions) as given in Eq. (2.2) is prefrab
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A central property of the low-energy EFT is that Eq. (2.2)pexts a global (PN;) chiral
symmetry under the transformations

Yy — exp(irjaj) Y, (2.6)

where the matrice§; are the(2N;)? hermitian generators of (@N;), such that for the case of
graphene monolayers, the group i$4) It should be noted that the choice of any particular
representation for the; is completely arbitrary and is not necessary for any calmral purpose,
as all relevant information is provided by the Clifford dige. However, the identification of the
spinor degrees of freedom with any particular Dirac poirt graphene sublattice is dependent on
the chosen representation. Thi&chiral symmetry, which strictly speaking is a flavor symmetr
can be spontaneously broken down t(2UU(2), in which case the excitonic condensatey)
acquires a non-vanishing value, signaling the formatiomgusiparticle-hole bound states. The
same group structure is obtained by adding to Eq. (2.2) &ypavariant (Dirac) mass term

[ dxatmays, 2.7)

which breaks the symmetry explicitly. For the extended tpesith N; flavors, the symmetry
breaking pattern is (2N;) — U(N;)xU(N¢). Other symmetry breaking patterns, involving the
possibilites of magnetic as well as Cooper-like pairingtabdgities, have been investigated in
Refs. [9, 11].

2.2 Effective action and probability measure
The patrtition function corresponding to Eq. (2.2) is given b

2= [ I6TWIT exXp(— [ Y A, @8)

where it is possible to integrate out the fermionic degrddseedom, as5: is quadratic in thep,.
We thus obtain

2= [ 7n expl~L[Ag) detDIA)" 29)
where

S 2—:(_1:]-2 [ dxat(@a)? (2.10)

is the pure gauge part of the action. It is of central impartafor the convergence of the Monte
Carlo algorithm that the above determinant has a definite, siglependently of any particular
configuration of the gauge field,. One way to establish this property is to proceed by writing
D[Ay] in the form

_(M[A] © _(M[A] O
D[Ao]—< 0 _M[AO]>—< 0 MT[%])’ (2.11)
where
M[Aq] = 0g(0y +1Ag) +VE G0, =12, (2.12)

which entails a specific choice of Dirgematrices. Furthermore, we note ti#gfis real, and that
the Pauli matrices and the momentum operator are hermifiae. latter impliesc?T = —d,, and
therefore

det D) = detM)detM™) = |detM)|?> > 0. (2.13)
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While this property is not affected by the introduction of arify invariant mass term such as
Eq. (2.7), the positivity of d¢D) breaks down in the presence of a chemical potential.

The fact that déD) is positive definite allows for the definition of an effectigetion that is
purely real, given by

Seii[Ag] = —N¢ Indet(D[A]) + A, (2.14)
so that the partition function becomes
2~ [ 7h exp—SuslAo)). (2.15)

whereP[Aq] = exp(—S.4[Ay]) > 0 can be interpreted as a positive definite probability meafr
a Monte Carlo calculation, as outlined in Section 3.

2.3 Operator expectation values

The expectation value of a given opera®py, )] dependent on the fermion fields can be
calculated by taking functional derivatives of the genagafunctional

Z[i.n) = [ o7 W PF expl~S [P, B .11, (2.16)

where source terms have been added to the original acti@mdieg to

SelAo 0.0, = Se Ao, Byl + [ dPxdt(@n +he). @17)

such that the modified effective gauge action is a function#, as well as of the sourceg 1. It
is again possible to integrate out the fermionic degreeseefdiom and take functional derivatives
with respect to the sources in the resulting expression

217} 0 | 90 exi~Snlnc) exp ~ [ cixatiD adn ) 2.18)

which makes it possible to obtain expectation values ins$esfa path integral ovek, only. While
this procedure is completely general, it is possible to empglslightly different approach in order
to facilitate the computation of the chiral condensate arsgeptibility.
The chiral condensate, which is the order parameter of the semimetal-insulat@asphran-
sition in graphene, is defined by
0 = (Pp), (2.19)

where the fermion fields are evaluated at the same spaceptime It is useful to note that the
massm, plays the role of a source, coupledggy,,. The expectation value of this operator can
therefore be obtained by first differentiating the partitfanction with respect tan, and dividing
by the volume, giving
1 [ 20 1dInz

0= V—Z/-@Ao@w%/d XAt (X,t) Py (X, 1) exp(—S¢) = Vom (2.20)
whereo has been defined as an average over the lattice volume oddupibe fermions. On the
other hand, once the fermions have been integrated outethetive with respect ton, yields

0= VLZ/@AoTr(D‘l[Ao]) exp(—Sef[Ag]) = \% (Tr(D™YA))), (2.21)
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where the identities

de(D]) = exp(Tr(logDA]),  298PAD _ gerpiagyTe <D-1[/\] dD) . (2.22)

aA F2)
have been used. The chiral susceptibifilymay be found by taking one more derivative with
respect tan,, giving

Jdo 1

X=om vV

(T(DY) — (Tr(D2) —(Tr(d)7] (2.23)

which is expected to diverge at a second-order phase immsitnd may also yield constraining
information on the universal critical exponents of the itian.

3. Graphene on thelattice

In this section we formulate the lattice version of Eq. (Zd@owing Refs. [12, 13]. It should
be noted in this context that a closely related lattice mofltie strong-coupling limit of graphene
has been considered in Ref. [14]. We begin by discretiziagtire gauge sector, where the require-
ment of gauge invariance implies the use of “link variablestepresent the gauge degrees of free-
dom. The “staggered” discretization of the fermionic seahen outlined, as it is the preferred
choice to represent fermions with chiral symmetry at finititide spacing [15, 16]. Throughout
this paper, the lattice spacing is set equal to unity, and #tudimensionful quantities should be
regarded as expressed in units of the lattice spacing.

3.1 Gaugeinvariance and link variables

The pure gauge part of the Euclidean action, Eqg. (2.10), edindught of as the non-relativistic
limit of the Lorentz-invariant form}FWF“" whereF,, = d,A, —d, A, such that

FuFHY = Foy O 4Ry FY - R0 = 2R F% = 2(0,A)°, G-

where we have usefg; = 0 (no magnetic field) and,A; = 0 (no electric field induction by a mag-
netic field), valid in the non-relativistic limite < ). Thus, for graphene the only non-vanishing
contribution is the electric fiel&t; = —d;A,, which represents the instantaneous Coulomb interac-
tion between the quasiparticles.

The gauge action (2.10) is invariant under the time-depandgatially uniform gauge trans-
formations

Ay — Ag+af(t), wﬁexp{i/()tdt’a(t’)}tp, (3.2)

wherea (t) is a function of time only. Thus, in spite of its apparent dlicify, the effective theory of
graphene possesses a truly local gauge invariance, whichdshe respected by the lattice action.
To this end, one introduces temporal link variables

Uon =Un =exp(if,), (3.3)

where@, is the dimensionless lattice gauge field evaluated at thiedgtointn = (ng, Ny, N, N3).
The spatial link variables
Un=1 (3.4)
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are set to unity. It is convenient to express the discretvagdion of Eq. (2.10) in terms of “plague-
tte” variables, defined by

U/Jv,n = Uu,nUv,n+quJ,n+e‘,UJ.n7 (3.5)

where, in the present case of a pure Coulomb interactiomrilyenon-trivial components atd,
andU,,. Those plaquette components then correspond to the deseréormulation of the electric
field. The remaining components corresponding to the magfietd are equal to unity. These
statements can be summarized in the expression

qu7n = 5u05vi UnUr:rJre, + 6v05ui Ur;rUn-ke, + 5u05v0+ 5ui5vj' (3-6)

In terms of the gauge link variables and plaquettes, theatized gauge action corresponding
to EqQ. (2.10) is given by [17]

=8 Y {1—%(uwﬂn+ugv.n)}, (3.7)

n U>v

whereB = 1/¢?, such tha3 — v /g? when the rescaling of Eq. (2.4) is applied. In Eq. (3.7), the
only non-vanishing contributions arise from the terms withv) = (1,0); (2,0); (3,0); (2,1);(3,1)
and(3,2). Eqg. (3.7) may be simplified to

Sc=PY [3— im (Ununlq)] , (3.8)

where[(x) denotes the real part af Eq. (3.8) is referred to as the compact formulation, which
has been found to pose problems related to spurious monopotEensation in QED and related
theories [18]. On the other hand, the non-compact formanativhich is obtained from Eq. (3.8)
by expanding](UnU,Lq) to second order 18,

0 (ununlg) —1- % (en+a - en)2+ (3.9)
giving
3
Sn = g ;;1 <9n+e| a 9”>2’ (3.10)

is free from such problems [16, 19] and allows for a realistntinuum limit.

3.2 Staggered fermions

While the discretization of the gauge sector is relativéfgightforward, the inclusion of dy-
namical fermions on the lattice is a notoriously difficulbptem. One of the main issues when
simulating fermions on the lattice is the so-called doubfpnoblem (for an overview, see Ref. [17],
Chapter 4). This problem is related to the chiral invariaofche fermionic sector, and arises due to
the appearance of multiple (unwanted) zeros in the invexgeggator. In other words, one is simu-
lating more fermion flavors than expected, the exact numéieigcdependent on the dimensionality
of the theory. There exists a number of ways to avoid the diogiproblem, but all of them break
chiral invariance in one way or the other, a fact encoded énNfelsen-Ninomiya theorem [20].
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The solution we have chosen for our simulations of graphsribea “staggered” discretization of
Ref. [21]. This choice is advantageous for the study of smmus chiral symmetry breaking in
graphene, as it yields the correct number of degrees ofdraeshile (partially) preserving chiral
symmetry. The major drawback of staggered fermions is tiafull chiral symmetry is restored
only in the continuum limit, a fact referred to as “taste syatim breaking”.

In order to discretize the fermionic sector of Eq. (2.2) in@vamenable to computer simu-
lations, a number of choices need to be made. As a first stepidies are integrated out, and the
partition function is written purely in terms of the gaugddieEq. (2.15). The fermions are then
represented exclusively through @j. One can then attempt to compute the determinant exactly
for a given@ configuration, which is feasible due to the low dimensidgadi the problem, Alter-
natively, one may rewrite d@D) in terms of a path integral over complex scalar fields retetoe
as pseudofermions, as is common in Lattice QCD.

It has been shown in Ref. [22] that for each staggered flaverreoovers, in the continuum
limit, two four-component Dirac flavors. Thus, by retaininge staggered flavor, it is possible
to have exactly eight continuum fermionic degrees of freedahich is the correct number for
graphene. The action of a single staggered flavor is given by

S;[X7X>6]:_Z)?nKn,m[e]va (311)

where the staggered Dirac operator is

Kn,m[e] = %(dﬂ-ewm Un B 5n—e07m UnTw) + V?F Z nr|1(5n+q7m - dw—e,,m) + rr’bén,m7 (3.12)
|

where the phase factorgarise from the spin-diagonalization of the Dirac matricg3][ The op-
eratorK thus replace® in all expressions for the probability, chiral condensatd susceptibility
that were derived in the previous sections. As expected fl@mrNielsen-Ninomiya theorem, the
staggered lattice action does not retain the fultlchiral symmetry of the original graphene ac-
tion at finite lattice spacing. As shown in Ref. [22], only @gtoup U1)xU(1) remains upon
discretization. Spontaneous condensatiof pf or equivalently the introduction of a parity invari-
ant mass term, reduces this symmetry {@J

Finally, it should be pointed out that the situation conaggrgraphene is unusually favorable,
in the sense that the staggered formalism fortuitously ides/the correct number of fermionic
degrees of freedom, a¢; = 2 for graphene monolayers. In general, staggered fermionsde
only a compromise solution in the sense that some degreeraf shmmetry is preserved, at the
price of retaining some of the doubling originally presenthe discretized fermion action. Indeed,
if the case ofN; = 1 were to be simulated, it would be necessary to resort to dhéraversial
“rooting” trick [24], whereby the desired number of contima flavors is restored by taking the
appropriate root of the Dirac operator.

4. Resultsfor B,

The results presented in this work for the non-compact gawagjen are partly based on the
reanalysis of extant data from Ref. [12] and partly on nevadut larger lattices. These datasets
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Figure 1. Result of a simultaneous fit i@ (left panel),x, (middle panel) and (right panel). Red symbols
indicate data foN, = 28, the remaining ones are fbp = 32. The datapoints fdR are grouped according

to B~L. The fit range has been restricted such that datamjti 0.005 and3 < 0.1 are excluded, as data at
largem, and small3 have substantial finite volume effects. The optimal paranseire, = 0.07742) and

0 =2.93(2), with b = 1.0 fixed. The data satisfly= 1 very accurately. The error bars on the datapoints are
obtained via the Jackknife method [25].

correspond td\, = N, = 28 and 32, with the extent of the bulk dimensigpset at either 12 or 32.
We find that finite-size effects are most pronounced as fonstofN, andN, at smallg, while the
effect of N, on the results is negligible. Our analysis proceeds by festmhining the condensate
o, susceptibilityx, andR= x, m,/o as a function of3 andm,. The second step of the analysis
consists of fitting an equation of state (EOSptandy; in order to obtain estimates of the critical
coupling B, and the critical exponents. Our EOS is of the form

meX(B) =Y (B) o®+ a?, (4.1)

where the exponerit = E— 1/4. This form has been used previously in the context of Lattice
QED in (3+1) dimensions [26]. Here, we have referred to titecat exponent using the notatigh

to avoid confusion with the inverse coupliffy The dependence on the critical couplifgenters
through the expansions

X(B):X0+X1<1—BE>+..., Y(B):Y1<1—BE>+..., (4.2)

C C
where terms up tX; andY; have been retained. Higher-order terms were found to hawsya v
small effect on the analysis, and have thus been discarded.

We find that a simultaneous fit to all data foy x, andR yields the most stable results. It
is also necessary to carefully consider finite-volume ¢ffemd the impact they have on the fit
parameters. We have therefore excluded datapointsyjth 0.005 andB < 0.1. In this way, we
find consistency with mean-field exponendss= 3 andb = 1. Including data at lowe and larger
m, suggest ~ 2.2, however such fits have a much higherand compare unfavorably with the
data onR. We find thatN, = 28 andN, = 32 give consistent results using the restricted dataset.
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5. Experimental situation

We now turn to the question whether experiments which meatarDC conductivity of sus-
pended graphene provide any evidence for semiconductimavim which would follow naturally
from the excitonic gap scenario. While a full LMC calculatiof the conductivity is not yet avail-
able, a simplified analysis in terms of a Kubo description @pged quasiparticles has recently
been given in Ref. [27], where the data of Ref. [28] on the sndpd graphene devices “S1”, “S2”
and “S3” were analyzed in terms of the expressie:= o, + Opy Hereay is the quasiparticle
contribution intrinsic to graphene, while the “backgroicdmponenta, is device-dependent.

The Hamiltonian describing Dirac quasiparticles with a §agnd Fermi velocityy ~ ¢/300
is given byH = 0,V K, + 0,V k, + 034 /2, where thegj are Pauli matrices. The contributiar of
the Dirac quasiparticles to the DC conductivity of a graheronolayer is then

42 T (™
h 2/

0 _ Bw _ _ Bw _
de [ dEE7,(8.8) fBe= " —P) —tBet 7 —PW) (g1
A2

w

Oq

wheref3 = 1/kgT, the Fermi function is given by(x) = 1/(1+ exp(x)), 4 denotes the chemical
potential and the factor of 4 accounts for the spin and valkgrees of freedom. Then

Tu(&,€) = £+ 0%/4 [5,, (E+s+9) O (E—s+%)>+5,, (E+s—%)) O (E—s—ﬁ))}

+ 52_5#1[50 (E—E—%))én <5_5+%))+5n (E+£+%))5’7 <E+E_%))}’

(5.2)

wheren is the scattering rate of the quasiparticles, which can bewated for [29] by broadening
the delta functions according 3, (x) = n/(x%+n?). In the DC limit, the integral ove€ in
Eq. (5.1) yields

@ 1 N2 47
d - - _ 274
NG 7088 2 16men

arg(A?—47), (5.3)
wherez=¢+in.

The inclusion of the background componeny, is motivated by the fact that the minimal
conductivity in graphene samples is non-universal. Insndpd graphene, it is much smaller than
in graphene samples on a substrate and furthermore streagiple-dependent. There is also a
clear tendency of the minimal conductivity to decrease witlreasing sample purity [30]. It is
likely that the minimal conductivity in graphene is formefiseveral components, including the
effects of impurities [31], inhomogeneity [32] and effedtge to invasive metallic contacts [33]. In

our analysis, we have used the phenomenological form
Oy = 0o expl—(To/T)“], (5.4)

which allows for the slight empirical-dependence m‘bg. The empirical data of Ref. [28] is shown
in Fig. 2, together with fits in terms af, and Opg- It is noteworthy that the data display a distinct
“knee” at~ 30 K, which in terms of the present description is interpitete the temperature below
which thermal activation is negligible. Thus, in order taeienineabg in an unbiased fashion, we

10
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Figure2: Left panel: quasiparticle (QP) and background (BG) comptefo (n= 0, T) for the suspended
graphene devices S1-S3, as determined in Ref. [27]. Theriealpiata is reproduced from Ref. [28].
All devices show a “knee" separating thermally activated background regions. Right panef(n,T)
determined from a fit t@(n = 0,T) and the resistivityp(n, T), reproduced from Ref. [27].

first fix g, and T, using data in the extreme loW-region. One may then subtragf, at all T,
and determing8n andA by fitting g, to the resulting dataset. A simultaneous fitafand Opg
confirms the validity of this procedure. WhitgT) is a priori unknown, a scenario of constgBiy
is strongly favored by the available data in the range 38 K < 150 K.

Our findings in Ref. [27] suggest that the suspended graptieviees of Ref. [28] exhibit a
thermally activated conductivitg,, which is well described by Eq. (5.1) from~ 150 K down to
T ~ 35 K, where the signal is lost due to limited measurementracgu The determined bandgaps
are in the rangé\ ~ 25— 40 meV, whereas all samples were found to faeor ~ 0.1 indicat-
ing a scattering rate which increases linearly with A natural scattering mechanism with such
properties is provided by the long-range Coulomb inteosciB4] up to logarithmic corrections.
Furthermore, this value g8n is consistent with the high carrier mobilities and long méae
paths reported in Ref. [28], as well as with theoreticalneates of the mean free path due to long-
range Coulomb scattering [34]. Specifically, for= 35— 150 K we findn = 3.5 — 15 K, with
corresponding mean free pathshag /n ~ 0.5— 2.0 um. Fits with no gap4 = 0), constant), or
zero background were found to be incompatible with data.

As shown in Fig. 2, these conclusions are consistent wittotiservedo (n), which depends
sensitively on the value g8n determined from data at = 0. Furthermore, the interpretation
of the observedr(n, T) as due to thermal activation accounts, in a natural way,Herobserved
transitional densityn* above whicho(T) reverts from insulating to metallic. The determined
scattering rate) (T) is also suggestive of long-range Coulomb scattering, wisiclonsistent with
the ultrapure character of the suspended graphene sanfiites. ¢28].
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6. Conclusions

We have reviewed the Lattice Gauge Theory approach to thestmwgy EFT of graphene,
with the aim of introducing this technique to a wider audeerand motivate the application of
this approach to systems beyond monolayer graphene. Guulai@Ebns within this the graphene
EFT indicate that it displays a chiral phase transition aitacal coupling of 3, = 0.07742), with
critical exponents that appear consistent with mean-fiedibty. Spontaneous chiral symmetry
breaking in the graphene EFT would lead to the appearancegay & the quasiparticle spectrum,
directly linked to the formation of quasiparticle-hole qzafexcitons). It is conceivable that such a
transition occurs in suspended graphene, where the dtrefiglhe Coulomb interaction attains its
maximum value.

In an effort to clarify whether currently available expeeintal data on suspended graphene
provide any evidence for the excitonic scenario, we haveewead the status of such measure-
ments, which show a definite (though relatively mild) insial@g trend at lowT in the vicinity
of the neutral point. We have presented an interpretatidiheobbserved anomalous temperature
dependence in terms of the excitonic gap scenario, andtiteiyafound that the data may be
consistently explained in terms of gapped Dirac quasiglegiA ~ 30 meV) with the long-range
Coulomb interaction as a natural candidate for the domiseatitering mechanism. Further experi-
mental studies of the conductivity at I6lvin suspended graphene are clearly called for, preferably
minimizing the effects of invasive metallic contacts.

Further investigations using the Lattice Gauge Theory @ggr are in progress, including
the renormalization o due to the Coulomb interaction, the magnetic catalysis @&maimetal-
insulator transition at large external magnetic fields [, and the critical temperature for exci-
ton condensation in graphene bilayers [37]. The computaifdransport properties involves the
extraction of spectral functions in Minkowski spacetimenfr Euclidean time lattice data. Such
calculations are also feasible nowadays, as Bayesiansimalyupled with the Maximum Entropy
Method has been successfully applied to QCD [38]. Areastefést include the electrical con-
ductivity and viscosity [39] of the quasiparticles in graple. Due to the flexibility of the Lattice
Monte Carlo and Quantum Monte Carlo methods, further agfitins are likely to arise in the
closely related fields of graphene nanowires, higisuperconductors and hexagonal optical lat-
tices, to name a few. In summary, the application of Lattigai@® Theory to condensed matter
problems appears poised to develop into a highly fruitfutifoed study.
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