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1. Introductory Comments

Recent progress in lattice phenomenology has been trulyessjve, due to improved algo-
rithms and theoretical developments as well as more poWweofuputing resources. It is clearly
impossible to do justice to the title of this talk by discuggsall the exciting new developments and
results and | will not try to do this. At this conference theve been a number of excellent review
talks on specific topics including those in refs. [1—5] aslwaslmany parallel sessions in which
the new ideas and results have been presented explicitlyll fhwrefore not attempt to make a
systematic compilation of the latest lattice results. | afo not discuss the different formulations
of lattice QCD or effective theories of heavy quarks. Indtewill discuss and give examples of

1. Mature quantities, i.e. ones which have been studied successintlywith improving preci-
sion for many years. These include the determination of tkl@atrix elemeniv,s and the
Bk parameter of neutral kaon mixing, which | will discuss. Tla¢umal question which arises
for such quantities isvhat next? Does the phenomenology require us to strive towards even
higher precision or should we set our priorities towardsayeduation of other quantities?

2. Continuing attempts to extend the range of physical diesfor which lattice simulations
can contribute to the quantitative control of the nonpétive QCD effects. In this context
| will discuss attempts to evaluake— mrr decay amplitudes and a recent study ofghen’
system. | will also briefly mention relatively early atterapd evaluate long-distance effects,
encoded in the matrix elements of time-ordered (non-lgmadilucts of operators.

3. Quantities for which we don't yet know how to formulate tatice calculation of the corre-
sponding non-perturbative QCD effects. For illustratiomill discuss two-body nonleptonic
B-decays, a hugely important set of processes for which therlarge amount of experimen-
tal data and yet lattice simulations are not playing anyiigant réle in the phenomenology.

The examples | use in this talk are taken from Flavour Physigsof course we also need to re-
member the contributions which lattice QCD is making to tegaelopment of our understanding
of hadronic structure and to the determination of quark emssd the coupling constamg. The
mission of precision flavour physics is to play a complementary réleitgep, experiments in dis-
covering and unraveling the next layer of fundamental pts/beyond the standard model. If, as is
expected, or at least hoped, the LHC experiments discoveelmnentary particles then precision
flavour physics will be necessary to determine the undaglyireoretical framework and lattice
simulations will be central to this endeavour, with the sfjetask of quantifying nonperturbative
hadronic effects. The discovery potential of precisiondiavphysics also should not be under-
estimated however, with a real possibility that currianmsions within the standard CKM analysis
will be confirmed and become inconsistencies which will havée explained byew physics.
Even restricting the discussion to flavour physics, | havieetgelective and have naturally chosen
to discuss the status of some topics which have been of dimesest to me in recent years, and
which | believe are indicative of the exciting progress araspects for the subject more widely.
Before proceeding to the discussion of specific processaastiwith some comments about
the use of continuum perturbation theory which is necesgamglate renormalization schemes
which can be simulated in lattice calculations and onesaralimensional regularization (such
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asMS) which cannot, but which are generally used in the peative evaluation of Wilson co-
efficient functions. The main point of this discussion is twlearline that the precision of current
lattice computations is such that, in order to get the marinsgientific benefit from the results
we need to work with the higher-order perturbation theompomnity to obtain Wilson coefficient
functions in schemes we can simulate. After this digreskfmoceed to a discussion of the status
of the evaluation of a variety of physical quantities, staytvith standard ones such4g andBy,
through quantities which we are beginning to evaluate bbliauch aK — T decay amplitudes
andn —n’ masses and mixing and finally to some quantities which weeatlyr do not know how
to evaluate at all (non-leptoni8-decay amplitudes).

1.1 Continuum Perturbation Theory

Lattice simulations are used to compute the long-distarmmreperturbative effects in quan-
tities such as the matrix elements of local composite opesair the QCD parameterss (the
strong coupling constant) and the quark masses. Theseitipgantquire renormalization and so
have to be combined with perturbative calculations befbey tan be used in predicting physical
observables. This is sketched in the following oversinmgdifpicture:

Physics = C x (f|Oli)
T T
Perturbative Lattice
QCD QCD

whereC (perhaps a Wilson coefficient function) contains the sk@tance physics and is calcu-
lated in perturbation theory and the long-distance effactscontained in the matrix element(s)
of one or more local operators. The renormalization schengesaale dependence cancels be-
tween the two factor€ and( f |O|i) provided that they are calculated in the same renormadizati
scheme. Because of its practical advantagés usually calculated in a scheme based on dimen-
sional regularization, such as tMS scheme. Unfortunately however, we are not able to perform
lattice simulations in a non-integer number of dimensiamd laenceMS, while being the scheme
of choice in continuum perturbative calculations, is noedily useful in combining the perturba-
tive and lattice results. In particular, it is not possitbectlculate the matrix element in théS
scheme entirely non-perturbatively.

One possibility for matchingC and the matrix element, as long as the ultraviolet cut-off
(a~1, whereais the lattice spacing) and the renormalization scaleafe both sufficiently large, is
to use perturbation theory to relaté| 0% (a)|i), computed in the bare lattice theory and with bare
operatordD'@(a), to the corresponding renormalized opera@@(u). In addition to the techni-
cal difficulty of performing perturbative calculations imetlattice theory beyond one-loop order, it
is found however, that the series frequently converge godris therefore preferable to perform
Non-Perturbative Renormalization (NPR), by choosing a renormalization condition which can be
imposed directly in lattice computations [6] and exampliesugh schemes include the momentum
schemes RI-Mom [6] and its recent generalization RI-SMon8]and schemes based on the use
of the Schrédinger Functional [9]. Having obtained the mmattement in such an intermediate
scheme, we need to combine it withcalculated in the same scheme or equivalently to translate
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the matrix element from the intermediate schem&®. The precision of lattice calculations is
now such that this translation from the intermediate schen\@S needs to be performed beyond
one-loop order and hence is left most effectively to the ggsional NLO perturbation theory
specialists. It is therefore pleasing to see such caloulatbeing performed; this enhances con-
siderably the phenomenological reach of the lattice catmns. In addition to John Gracey, who
has been performing such calculations for some time (sesxtonple [10]), there have been recent
calculations relating the quark masses in the RI-SMomM8Bachemes at two-loop order [11, 12].
Note also the joint work by the HPQCD lattice collaboratiorddhe Karlsruhe perturbation theo-
rists on the evaluation of the charm-quark mass by matchiognemts of correlators on the lattice
and in the continuum [13].

The principal lesson of this section is that close collabonawith the QCD perturbation the-
ory community is increasingly necessary to optimise thaiBgance of our lattice results.

2. Vs from Lattice ssmulations

Lattice calculations of the decay constafgsand fx are by now standard and from the ratio
fx / f, combined with the experimental leptonic widths, we obtam ratioV,s/Vuq4. The current
status obtained from simulations with = 2+ 1 flavours of sea quarks is [14]

';_K = 1.1934 0.006. (2.1)
m

In the last 6 years or so, following the suggestion of Bear@t al. [15], it has also become
possible to determing s precisely by combining the experimental resultskor 1T semileptonic
decays with lattice determinations of the form facfor(0) = f°(0), where the argument 0 in
the parentheses indicates that the four-momentum tragdfetween the kaon and pion satisfies
o? = 0[16—18]. The FLAG collaboration summarises the curreatistof the results for the form
factor as [14]

f*(0) = 0.956+ 0.008. (2.2)

For both the quantitie$c / fr andf ™ (0), the calculational techniques are such that we would obtain
precisely 1 in the SU(3) flavour symmetry liming = my = ms) and so it is the difference from
one which we are actually computing. The Ademollo-Gattmthe implies that these corrections
are small forf*(0), and the main uncertainty for this quantity is due to thealhextrapolation.
The precision of the results in egs. (2.1) and (2.2) is tralparkable when compared to what was
possible just a few years ago.

The recent results are nicely summarized in figure 1, alsm /@ AG [14], in which are
shown:

(i) the allowed regions from calculations &f/f; with Ny = 2+ 1 andN¢ = 2 flavours of
sea-quark (shown separately);

(i) the allowed regions from calculations dft (0) with Ny = 2+ 1 andN; = 2 flavours of
sea-quark (shown separately);

(iii) the allowed regions combining the calculations faf/ f,; and f*(0) with Ny =2+ 1 (red
oval) andN¢ = 2 (dashed blue oval).
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Figure 1. The plot compares the information ffM,q| and|Vys| obtained on the lattice with the experimental
result extracted from nuclefirtransitions. The dotted arc is part of the cirpilgy|® + [Vus|2 = 1, representing
the correlation betweel,4| and|Vs| that follows if the three-flavour CKM-matrix is unitary. [14

Also shown on this plot is the result fdy from super-allowed nucleg8-decays and an arc of
the circle|Vya|? + [Vus|? = 1. Since|Vip|? is very small compared to the uncertaintieg\igy |2 and
IVus|?, this circle represents the unitarity condition on the ficst of the CKM matrix. Although
it would have been more exciting to find an inconsistency, eethat everything is remarkably
consistent with the standard model, a point | underlinehferrin the next subsection.

2.1 Vs within the Standard Model

I'd now like to share a simple analysis, which | learned fromaolleagues in the FLAG [14]
collaboration, which determinégs in the Standard Model without lattice calculations and Whic
underlines again how remarkably consistent the latticelteor fx / f; and f *(0) are with Stan-
dard Model expectations. Experimental studies of leptdeicays of kaons and pions give us two
precise constraints for the four quantiti¥sy, Vs, f / f and f+(0) [19]:

Vs f
us K1 =0.2759959) and |Visf(0)] =0.2166147). (2.3)
Vud fr(
Within the standard model, a third equation is provided lgyuhitarity constraint:
|Vud|2 + |Vus|2 = 17 (2-4)

where |V p|? has been dropped from the left-hand side because it is srtiadie the uncertainties
in the remaining terms. Now egs. (2.3) and (2.4) give 3 equatfor four unknowns. As the fourth
equation we can take the value \4f; from the recent analysis in ref. [20] based on 20 different
superallowed nuclegB-transitions:

|Vud | = 0.9742522). (2.5)
Combining equations (2.3), (2.4) and (2.5) we obtain:
Mus| = 0.2254495), f*(0) = 0.960846), ]]:—K =1.192759), (2.6)
T

in excellent agreement with the lattice results foy f; and f *(0) in (2.1) and (2.2).
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My FO (o) Mr FO (o)
670MeV  1.00029(6) | 575MeV  1.00016(6)
555MeV  1.00192(34)| 470MeV  1.00272(34)
415MeV  1.00887(89)| 435MeV  1.00416(43)
330MeV 1.02143(132) 375MeV 1.00961(123)

- - 300 MeV 1.01923(121)
- - 260 MeV 1.03097(224)

Table 1: Values of f°(g2,,,) as a function ofm, obtained by the RBC-UKQCD collaboration with 2+1
flavours of Domain Wall Fermions (left two columns) [16] andthe ETM collaboration with 2 flavours of
twisted mass fermions (right two columns) [17].

2.2 Ky3 decays and SU(2) chiral perturbation theory

I end this section with some observations relating to septoleicK — mdecays K¢z decays)
using SU(2) chiral perturbation theory. Lattice calcwas of f+(0) = f°(0) start with the eval-
uation of f(q2,,,), whereg? ,, = (mx —my)? is the largest physical value of (whereq is the
momentum transfer) and corresponds to the kinematics inhathie initial kaon and final pion are
both at rest. f9(gZ,,,) can be calculated with excellent precision as illustratedable 1, where
the results from the RBC-UKQCD and ETM collaborations amspnted as functions of the pion
mass. The reason that | present these results here, is ¢hanhtties in table 1 appear to a long
way below the value expected in the SU(2) chiral limit. Thedue is given by one of the very few
analytic non-perturbative results in QCD, the Callan-Tran relation, which | present here in the
form

fO(02 00 = Tk 126 (2.7)
fr

where all the quantities are evaluated in the SU(2) chinait]im, = my = 0. It is a little puzzling
that while the values of°(gZ,,,) in table 1 are increasing as,; decreases, they are only doing so
very slowly. In ref. [21], we used SU(2) chiral perturbatitheory to investigate whether the very
slow increase irf%(g2,,,) observed in table 1 as,; decreases is expected to accelerate towards the
value in eq. (2.7) for smaller values of the pion mass. Wedahat the one-loop chiral logarithms
have a large coefficient and are of the correct size to acdoutie difference but they have the
wrong sign, implying that the analytic terms (or higher ordiiral logarithms) should account
for approximately twice the difference between the resultable 1 and eq. (2.7). Of course the
analytic terms (both linear and quadrationy) are proportional to unknown low-energy constants
(LECs) and hence are not calculable. In SU(3) chiral pedtimb theory on the other hand, at
one-loop order the LECs can be expressed in ternfg of,; [22, 23]. Estimating the SU(2) LECs
by converting results from SU(3) ChPT suggests that theyioaerms have the correct sign and
(large) magnitude to account for the difference.

It should be stressed here that since, apart from the vafubg € ECs, the above discussion
relied only on SU(2) chiral perturbation theory and therefine same features hold 8— rand
D — mrsemileptonic decays.
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Publication N B«

RBC-UKQCD 2007[27] 2+1 0.720(13)(37)
Aubin etal. 2009 [28]  2+1  0.724(8)(29)
Baeetal. 2010 [29]  2+1 0.724(12)(43)
RBC-UKQCD 2010 [30] 2+1 0.749(7)(26)
JLQCD 2008 [31] 2 0.758(6)(71)
ETMC 2010 [32] 2 0.729(30)

Table 2: A comparison of recent results for the renormalization griowariantBx. Ny denotes the number
of dynamical quark flavours. In each case, the first erroiissical and the second is systematic.

Of course, we really want to know the chiral behaviour of tharf-factor at the standard
reference poing?® = 0. At this point, the energy of the pion in the rest frame of kaen is
approximatelymy /2 and so cannot be considered soft in SU(2) chiral pertunbdkieory. In spite
of the hard external pion, we found that it is possible to @atd the chiral logarithms, since they
can be calculated from saftternal loops, finding [21]

3 m e,
_ 3 m m2
f~(0) = F_ <1— ATe2r2 09 (F) +cm$T> , (2.9)

whereF. andc. are unknown LECs. In this way we have some information ablogtchiral
behaviour of the form factors @ = 0. Since the chiral extrapolation of the lattice results is
the largest uncertainty if®(0) any information about the chiral behaviour is useful (it \ebbe
very useful indeed if the results in egs.(2.8) and (2.9) @dd extended to two loops in chiral
perturbation theory). Thikard-pion chiral perturbation theory approach has been generalized to
K — mrdecays [24] and t8 — mandD — 1T semileptonic decays [25].

3. Bk

One of the very important quantities in particle physicsmreenology for which the pre-
cision of lattice results has improved hugely in recent ydams beeByx, the bag parameter of
neutral kaon mixing. It is defined as the suitably normaligeatrix element of théAS= 2 oper-
ator (d_y*s, ) (d_yHs.) between an initiak® and finalK° state (wherd denotes the left-handed
component of the spinor field). As recently as five years adojsDawson, the rapporteur at
this conference, was reporting results with a 12% errorelsrdue to the fact that there were in-
sufficient unquenched results at light masses [26]. A dmtaikview of recent results f@x has
been presented at this conference by Jack Laiho [5], fastiition here | tabulate the key results
in table 2. Not only are the errors reduced by a factor of 3 obsbthe results in table 2 were
obtained with a variety of fermion actions and techniquedirgisignificantly to our confidence in
the evaluation of the systematic uncertainties.
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Collaboration(s)| ReAo/Re A, g'/e
RBC [41] 253+1.8 | —(4.0+£23)x104
CP-PACS [42] 9+-12 (-7+-2)x104
Experiments 22.2 (17.24+1.8) x 1074

Table 3: Quenched 2001 results on thé = 1/2 rule ands’ /e obtained fromK — mandK — vacuum
matrix elements using the lowest order term in the SU(3)atleixpansion.

Lattice results foiBx are an important ingredient in global studies of the urtiariangle.
Although in general the remarkable consistency of the médfon from different physical pro-
cesses significantly restricts the possible parameteresipaamew physics, a number ténsions
have arisen in recent years at the 1.5—3 standard deviaieh (see for example [33—-37]), and
the results foByk contribute to these tensions. Calculation®gfwill continue towards 1% preci-
sion, but already with current precision it is necessaryegif considering corrections which had
previously been neglected. For example it has been stréisaeth the theoretical expression for
&, the parameter monitoring indirect CP-violationKn— mrr decays, we should include terms
proportional to ImMAg/ReA, (WhereAy is theK — it amplitude with the two pions in a state with
isospin 0) and recognise that the phase a(@aNy /Al') is not precisely equat/4 (AMk andAl
are the differences of the masses and widths oKihendKs mesons) [38 —40]. Necessary theoret
ical improvements include the evaluation of long distanféeces, for which we need to determine
matrix elements of the time-ordered product of two opesafsee sec. 6).

4. K — mrrdecays

An important challenge for the lattice phenomenology comityus the reliable calculation
of K — it decay amplitudes in general and attempts to reproduce ¢hexjperimental value of
¢’/e and to understand thidl = 1/2 rule (the enhancement of tid¢ = 1/2 amplitude by a factor
of about 22 relative to that fakl = 3/2 transitions) in particular. The non-zero experimentéliea
for €’/& was historically the first evidence for direct CP-violatidn the past lattice calculations
have tried to estimate the matrix elements by combining edatjpns ofKk — mandK — vacuum
matrix elements with the lowest order terms in the chiralaggion and | start with a brief review
of the status of such calculations before proceeding to@usgéson of the direct evaluation of the
matrix elements with two-pion final states.

4.1 K — mrrdecay amplitudesfrom K — mmand K — vacuum matrix elements

At lowest order in theJ (3) chiral expansion one can determine khe- rrrrdecay amplitudes
by calculatingK — mandK — vacuum matrix elements. In 2001, two collaborations ptklis
sone interesting quenched results on non-leptonic kaoayddn general and on thid =1/2 rule
and¢’ /e in particular (see table 3). In spite of the limitations aésk calculations, the authors did
achieve the control of theltraviolet problem, i.e. the numerical subtraction of power divergsnc
and the renormalization of the weak operators. This is kigbh-trivial.
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Figure 2: The mass dependence of the— 1T matrix elementm, my andm; are the masses of the sea and
valence light quark and the valence "heavy" (strange) cuagpectively.

The RBC-UKQCD collaboration have repeated the calculaitiothe pion-mass range 240-
420 MeV [43, 44]. For illustration consider the determioatbf a,7, the lowest order LEC for the

Al =3/2 (27,1) operator:

o2

(ra) = (S { (GU)L — (dd)L} + (SU)L (0d)c. 4.1)

Satisfactory fits for the mass dependence were obtained M&i® SU(3) ChPT, but the corrections
were found to be very large, casting serious doubt on theoappr This is illustrated in fig.2 where
the dashed curve represents the results in the SU(3) limit(my = ms) and the value of this curve
in the chiral limit is much below the data points, demonstathat the one-loop corrections are
very large. Thus the use of soft-pion theorems is not suffilyiereliable andK — 1T matrix
elements have to be computed directly. At this conferencéave also heard about a proposed
method to combin& — 1T matrix elements withiK — 7T ones limited to the two pions at rest [45].

4.2 Direct Calculations of K — mir Decay Amplitudes

From the above discussion we conclude that we must calcklatertir matrix elements di-
rectly and the RBC-UKQCD collaboration is now undertakingajor study. Theltraviolet prob-
lem of the subtraction of power divergences (i.e. of termgtviiverge as inverse powers of the
lattice spacing) remains tractable at the expense of signifistatistical errors. Thafrared prob-
lem of extracting the spectrum and amplitudes in a finite iaah volume is also understood as
long as we neglect the inelastic contribution (i.e. rescait) into states other than two pions).
Assuming that the rescattering is dominated by the s-watestthe quantization condition for
two-pion states in a finite volume derived by Lischer takesdinm [46 — 48]

o(q") +@(q) =nm (4.2)

whered is the physical s-wavart phase shiftg is a known kinematic function andis an integer.
The relative momenturg* is related to the two-pion enerdy by E? = 4(m2 + g*2). For illustra-
tion, all the formulae in this section are presented in th@reeof-mass frame, but they have also
been generalised to moving frames [49—51]. Thus from thesored values of the energies one
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can determine the phase-shift. The relation between thesume@d Euclidean matrix elements and
the physical amplitudes is given by [52, 53]

|A? = 8nv? 2{5’(Q*)+¢P’(Q*)} IMPZ, (4.3)
where thé denotes differentiation w.r.g*. (4.3) has been generalized to moving frames in [50, 51].

421 K— (T[T[)|:2 Decays

The calculation of decay amplitudes into two pion statefivgbspin 2 is relatively straight-
forward; there are no power divergences to subtract nor @uopdnected diagrams to evaluate.
We will see in section 4.2.2 that these are significant diliesi when evaluatind\l = 1/2 decay
amplitudes. An exploratory quenched study with improveds@vi fermions was completed in
2004 [54], but at that time we had not understood the finitewwe effects at non-zero total mo-
mentum. Results from RBC-UKQCD's exploratory quenchedigtwith Domain Wall Fermions
were presented in 2009 [55] and this year M.Lightman presenesults from dynamical simu-
lations with almost physical pions, but on a course lattie@].] Before discussing the results |
mention some theoretical points.

There are threAl = 3/2 operators whose matrix elements need to be evaluated:

Ofhryy = () {(@uh). — (dldi) } + (Su) (@), (4.4)
0Y? = (5'd") {(Wu)r— (dTd))r} + (SU) (Td)g (4.5)
03? = (5'd)), {(Wu)r— (dVd)r} + (S'Ul), (Td)g, (4.6)

wherei and j are colour indices an@gz)L r = Qiy*(1F y°)0g2. The subscrip(27,1) in (4.4)
denotes that the operator transforms as(®ie1) representation of th&J (3). x U (3)r chiral
symmetry group 03/2 are thel = 3/2 components of the electroweak penguin operators labelled
O7g in the standard notation for th&S = 1 effective Hamiltonian and transform as tie 8)
representation dfJ (3). x U (3)r.

A significant simplification in the calculation of the matelements of these operators is the
use of the Wigner-Eckart theorem to relate the physical— " r° matrix elements to unphysical
K* — " ones [57]:

2 (o) T () [O2 21K, @.7)

where the subscript on the operators indicaiés the change in the-component of isospin.
Eq. (4.7) is an exact relation in the isospin limi, = my, so that the evaluation of the matrix

elements of the operato&f andoi’fg are equivalent, but there are a number of advantages in us-

ing the fully extendedr™ rt*) states. The flavour structure of the operamig is simply (sd)(ud)
rather than thésd) (0u — dd) + (SU)dd structure of the operato@lﬁ ineq. (4.4)—(4.6).

With the " " -state we can impose antiperiodic boundary conditions emnlthuark say, so
that the ground state jgr* (r7/L)mr" (— /L)), where the arguments represent the momenta in lat-
tice units (up to finite-volume corrections). In contrasthe use of periodic boundary conditions,
for which the ground state corresponds to the two-pionssatiteés not now necessary to isolate an

(T (p1) T0(p2) [0} 5| K*) =

10
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3/2
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Figure3: Schematic diagram illustrating the contractionsfbre= 3/2 K — mrrrdecays in the RBC-UKQCD
calculation [55].

excited state in order to have a decay into two-moving piéis.the physical decay, the minimum
size of the lattice is halved from about 6 fm to 3fm.

The final theoretical point | wish to make here is that the usihe Wigner-Eckart theorem
also allows us evaluate the Lellouch-Liischer factor mgpthe measured matrix elements to the
physical amplitudes directly [58]. In particular, this facrequires knowledge of the derivative
of the phase-shift (see eq. (4.3)). By imposing partiallisted boundary conditions [59—62] on
the d-quark with twisting angled (it is sufficient to perform the twist in a single directiornhe
two-pion ground state now corresponds to a pion with monmeryL and the second pion with
momentum(8 — 2m) /L. The correspondingtrr s-wave phase-shift can then be obtained by the
Lischer formula (4.2) as a function 6fwhich allows for the derivative of the phase-shift to be
evaluated directly at the masses being simulated. Thisepige was tested in an exploratory
simulation [58] but has not yet been implemented in the m&8CRIKQCD programme.

I now briefly summarise the results from the RBC-UKQCD Catladtion presented at this
conference [56]. The correlation functions which need tewmuated are illustrated in fig.3. The
simulations were performed on 32 64 x 32 lattice using a Domain Wall Fermion action for the
quarks and the DSDR (dislocation suppressing determiragiaf) igauge action on a course lattice
(a1 ~ 1.4 GeV). The motivation for such a coarse lattice was to enali®st physical pions to
be simulated, th& — 7T amplitudes were obtained with a partially quenched pion assm,; =
145(6) MeV (the corresponding unitary pion hasg, ~ 180 MeV) and the kaon mass is 519(2) MeV,
both close to their physical values = 139.6 MeV, mx = 4937 MeV). The properties of these
ensembles were discussed at this conference by Bob Mawhi68k

With the masses given above{ = 1456(5) MeV, mx = 5192) MeV) and choosing the mo-
mentum of the pions to be2 /L, the energy of the two-pion system is found to be 516(9) MeV so
that the kinematics is almost matched. Sample plateausifbr @ the three operators are presented
in fig. 4. The preliminary result for the real part of the aryilie is ReA> = 1.56(07)stat(25)syst X
108 GeV, to be compared to the experimental number.50% 108 GeV . The non-perturbative
renormalization has not been completed for the electroweakators which contribute to InAf);
guesstimating the renormalization factors RBC-UKQCD quat (Az) = —(9.6 +0.04+ 2.4) x
102 GeV [56], but after the renormalization is complete the eysitic error will decrease from
about 25% to 15%, dominated by the uncertainty in the valubefattice spacing. It appears that
these calculations are possible with good precision.

4.2.2 K — () —o Decays

The evaluation oAl = 1/2 matrix elements is very considerably harder than that\for

11
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Figure5: The four diagrams which contribute to the two-pion propagat

3/2 operators. The two-pion state with= 0 has vacuum quantum numbers and the vacuum
contributions have to be subtracted requiring large sizdiscancelations to obtain the gxpE;t)
behaviour, wherde; is the energy of the two-pion state. To illustrate this, ideisthe four
diagrams in fig 5 which make up the two-pion propagator. The2 rrr correlation function is
proportional to D-C whereas tHe= 0 correlation function is proportional to 2D+C-6R+3V. The
major practical difficulty is to subtract the vacuum conitibn with sufficient precision.

To demonstrate the above, | now present some results froraxipleratory study by RBC-
UKQCD on a 16 x 32 x 16 lattice with an inverse lattice spacing af! = 1.73GeV and an
unphysically heavy pion with mass 420 MeV [64]. To increase statistical precision, quark
propagators are generated from each of the 32 time slicesfolin components of thie= 0 two-
pion correlation function 2D+C-6R+3V are shown separaitelg. 6 [64], from which we see that
the error on the 3V component grows significantly at largees.

In spite of the difficulty of subtracting the vacuum conttibus, at this conference Qi Liu
presented the results of a complete calculatioAgpand Ay, albeit at unphysical kinematics with
m; ~ 420 MeV and with the pions at rest [64]. There are 6 diagramswa in fig. 7 and a total
of 48 Wick contractions. The diagrams labeled by Mix3 and Mix fig.7 are needed to subtract
the power divergences which are proportional to matrix elets of the pseudoscalar denspgd.
The results for this unphysical kinematics are [64]

ReAy=(3.0+0.9)10 'GeV, ImAy=—(29+22)10 "GeV, (4.8)
ReA; = (5.394+0.045108GeV, ImAy= —(7.79+0.08)10 3 GeV. (4.9)

The precision is limited by the disconnected diagrams aedvéituum subtraction. At least the
calculation of the real part of\g appears to be tractable for this simplified kinematics avyea
pion masses, whereas for g we will require more statistics to confirm that there is indlee

12
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Figure 6: Contribution of the four components to the- 0 two-pion correlation function.
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Figure 7: Types of correlation function correspondingko— it decays. The blue circles represent the
insertion of a four quark operator appearing in the weak Htanmian and the squares that of the pseudoscalar
density.

signal. The greater challenge is now to proceed towardsipenig the corresponding calculations
at physical kinematics.

5. n and n’ Mesons

In the previous section we saw the importance of controlliisgonnected diagrams and this is
the case for many important phenomenological quantitiese Hmention one other longstanding
issue, the spectrum and mixing gfandn’ mesons. To determine the propagators we need to
evaluate the diagrams shown in fig. 8 and | report here on @antestudy on a lattice of spatial
extent 18 and lattice spacing ! = 1.73 GeV [65]. Using interpolating operators of the form

o = uysu -+ dysd

and Og=syss, 5.1
7 s = Sk (5.1)
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disconnected ones Wy, Dss, Djs andDg (not shown).
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Figure 9: (a) Values of each of diagrams as a function.ofb) The effective mass plots for thpandn’
mesons. In each case the results are for the lightest mass ginulations; see [65] for details.

we calculate the correlation functions

31

Xap(t) = 3i2t20<0a(t+t’)oﬁ(t’)> where a,B=1,s (5.2)
_ (Ci—2Dy —V2Dys
B <—\/§Dsl C$—Dss> ’ (5.3)

where the diagrams are defined in fig. 8. The propagators arafed with sources at each of
the 32 time slice$’. In fig. 9(a) we present the values of the diagrams at thedighhass used in
the simulations as a function tffrom which we see that the usual expectation that discaadec
diagrams are small does not apply here and also the expesardd that the uncertainties on the
disconnected diagrams are significantly larger than thosthe connected ones. The effective
mass plots for the eigenvaluesXft) are shown in fig. 9(b), again at the lightest masses used in the
simulations, from which we see a good plateau forghend a short, but clear, plateau for the

After the chiral extrapolation we obtain the valueg = 573(6) MeV andm,, = 947(142) MeV,
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where only the statistical errors are shown, compared texperimental values of 548 MeV and
958 MeV respectively.

As explained in ref. [65], it is also possible to determine thixing angle. Once SU(3) flavour
symmetry is broken it is not clear that the physigahndn’ states are simply linear combinations
of the octet and singlet flavour combinations; nevertheliessa standard phenomenological as-
sumption that they are. Based on this assumption we obtaalua of0 = —14.1(2.8)° (statistical
error only) in agreement with the phenomenological estsating in the range-20° to —10°. A
particularly important feature of the calculation is thasipossible to check the orthogonality of
the mixing matrix confirming that it is a good approximatianconsider only the symmetric octet
and singlet states in order to understand the mixing.

In spite of the limited precision, our calculation demoatds that QCD can explain the large
mass of the ninth pseudoscalar meson and its small mixirigthet SU(3) octet state and provides a
first benchmark for future calculations. There remains ntadie done now to reduce the statistical
errors and to quantify in detail the systematic uncertaintProgress in the efficient determination
of all-to-all propagators will be very important in impraoxg the reach and precision of lattice
calculations of physical quantities in which disconned&djrams play an major role.

6. Long-Distance Contributionsto Physical Quantities

We are used to calculating the short-distance contribsitionphysical processes, generally
formulating the calculation as the evaluation of the mad#iment of a local operator. A good
example is the evaluation of tiig parameter in neutral-kaon mixing illustrated by

s d S d
w§ §W =  C(Mw/u) >-<
d . s d S

The determination of the matrix element of the resulit®= 2 local operator has been discussed
in the section 3. In many cases the short-distance coritibis the dominant term, but long-
distance contributions are not always negligible, for eglenif the GIM suppression is logarithmic
or if there is a CKM enhancement (even if the GIM suppresssopower like). As lattice results
become more precise, we should try to compute the longrdistaontributions effectively and this
represents a new type of calculation. Early thoughts indmextion include ref. [66] for rare kaon
decays and ref.[67] for neutral kaon mixing.

6.1 Rare Kaon Decays

In ref. [66], the authors conclude that it is possible in pifite to evaluate the long distance
effects forKk — m¢™¢~ andK — nvv decays. This requires the evaluationToproducts of the
form

Toa(@?) =Ny [ dixdye ™ (m|T1QM) ()] [K) 6.1

whereQ is one of the four-quark operators appearing in the weak Hammen, J is a weak or
electromagnetic current adj, is a volume factor. The generic lattice calculation is tfane of
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correlation functions of the form
i [ dixe (0] gnltr. B) I} (%) [(0) - Q(0)] (4. K) [0} (6.2)

with t; > 0 andtx < 0. @; and ¢ are the interpolating operators for tiieandK mesons respec-
tively (after the three-dimensional Fourier transform haen taken). The main issue discussed in
ref. [66] is that of renormalization, the subtraction of mvdivergences and the consequences of
contact terms. The authors conclude that, as a result of gyri@s and the GIM mechanism, the
power divergences can be removed and they check their gemgranents by one-loop perturba-
tive calculations. They believe that their study opens afia of interesting physical applications
for the lattice community, although to date no such numédakulations have been performed.

6.2 Long-distance contribution to the K| -Ks mass difference and &g

At this conference Norman Christ presented some integestieas how the long-distance
contribution to thek; — Ks mass difference angk might be evaluated [67]. This requires

(i) the calculation of the long-distance contribution te thatrix elements of the product of two
AS=1, four-quark weak operators between kaon states;

(ii) the subtraction of the short distance part of this maéiement in a way that is consistent
with the original explicit evaluation of the short-distancontribution;

(i) a generalization of the Lellouch-Lischer approacHitite-volume corrections to second
order in the weak interaction.

Although much work remains to be done to develop these ideasipracticable method, the main
theoretical steps have now been taken.

7. Non-leptonic B-Decays

| end this talk with a discussion of an important class of peses in flavour physics for which,
up to now at least, little or no progress has been made in flating a lattice approach, namely
non-leptonicB-decays. A huge amount of precise information, from over didhnels, has been
obtained about decay rates and CP-asymmetries for thesasellecays oB-mesons into two light
mesons. Unfortunately, with just a few exceptions (mosablytthe CP-asymmetry in the golden-
modeB — JYKsg), our ability to deduce fundamental information about CKMtrnix elements is
limited by our inability to quantify the non-perturbativeQD effects sufficiently precisely.

The operator product expansion can be used to separatenthehal short distance physics,
so that the non-perturbative QCD effects are containeddnihtrix elements of local operators,
(M1M2|0;(0)|B), whereQ; is aAB = 1 operator andMy > are light mesons. In contrast ¥ —
riit decays discussed in section 4, where it is a good approximadi restrict consideration of
final-state rescattering to two-pion states, the large masise B-meson means that very many
intermediate states contribute. We do not yet(?) have adtieal framework for treating this in
simulations in Euclidean space.
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Figure 10: lllustration of nare factorization for the decaBy — r"mr. The local four-quark operator
(Ub)y_a (du)y_a is shown as a product of the bilinear operat@ns)y _a and (du)y_ represented by the
black circles. The two black circles are separated fortglari

In the past phenomenological approaches to nonlept®ecays were based on naive fac-
torization in which the matrix element was reduced to preglo€ matrix elements d8 — M; and
vacuum— M, and/or vice-versa, depending on the flavour quantum numbéis is illustrated in
fig. 10, where the matrix element of the local four-quark ap@r(tb)y_a (du)y_a is shown as the
product of the matrix elements of the two currents:

?

(7" 1T | (Wb)v—a (dU)y—a|Bg) = (71 | (du)y_a|0) (7T | (Tb)y—_a|Bq). (7.1)

The motivation for assuming (7.1) is that the two factors loa tight-hand side are known or
calculable (in principle at least). The first factor is prammal to the leptonic decay constaf
and the second is proportional to the form-factors of sgutoleic B— rrdecays. On the other hand
the limitations of such a model are clear; the renormabraticale dependence of the two sides do
not match and rescattering effects are not included.

In 1999, together with Beneke, Buchalla and Neubert, waseglthat asn, — o, the long-
distance QCD effects do factorise into simpler universamties [68 — 70]

(M1,M;|O;|B) = FB_’Ml / duT! (WP, (U) + (Mg — My)

+/01 de dudvTi” (&,U,V) Dg(&) By, (V) Dy, (U) (7.2)

whereFjB*"’Il are the form factors foB — M transitions, theb are light-cone distribution ampli-
tudes and™"!! are short distance contributions and are calculable img®tion theoryu andv are
the momentum fractions carried by the quarks in the mesdms.significance of the factorization
formula stems from the fact that the non-perturbative gtiastwhich appear on the right-hand
side are much simpler than the original matrix elements.y®itner reflect universal properties
of a single meson state (the light-cone distribution amgés) or refer to 8 — meson transition
matrix element of a local current (form factors). Convendib(naive) factorization is recovered as
a rigorous prediction in the infinite mass limit (i.e. nedieg O(as) andO(Aqycp/My) corrections).
Perturbative corrections to naive factorization can bemdsd systematically and the results are,
in general, process dependent. Itis a remarkable featatalttstrong interaction phases are gener-
ated perturbatively in the heavy quark limit. The factoti@a formulae are valid up t®(Agcp/My)
corrections and the main limitation of the framework is duéhe fact that sincey, is not so large,
CKM and chiral enhancements to non-factorizaDlé\qcp/my) terms are important.
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Although we do not know how to evaluate the matrix element8fe- M1M, decays directly,
we can ask what can lattice simulations contribute to thifamation formula (7.2)? The moments
of the light-cone distribution functions for the light mesdv; > can and are being computed [71]
as are thd8 — M form factors. What we do not know how to compute at this stagdlae parton
distribution amplitudes ofg or its moments and | end this section with a brief explanatibthe
reasons for this®Pg is defined by

Paap(ks) = [dz- &7 (0]55(2)(2 000 (0)B)], , o (7.3)

where+ denote light-cone coordinate aflO] represents the part-ordered exponential of gauge
fields betweerz and 0. In evaluating matrix element®g is convoluted with the perturbative
hard-scattering amplitudg'' and the relevant quantity is

V2 edig o
== Tooelko). (7.4)

(In higher orders of perturbation theory factors contagriicmg(h) appear.) Although at large,
(ng(h) ~ 1/R+, the convolution in eq.(7.4) is finite. In lattice calcutais, at least up to now, we
know how to calculate the matrix elements of local operaém the positive moments qg(h)
can indeed be written in terms of local operators. Howewey tliverge as powers of/a and we
still need to develop techniques to subtract these divesgewith sufficient precision.

This discussion underlines the fact that we need new theat&leas for lattice simulations to
start contributing to the evaluation of the non-pertu@m®@CD effects irB — MM, decays and
hence to enable fundamental information to be obtained flemwealth of experimental measure-

ments of the rates and CP-asymmetries.

8. Conclusions

At this conference we have seen many beautiful contribattorparticle physics phenomenol-
ogy, both in improved precision and in the extensions of astatpons beyond the standard quan-
tities. We readily forget that it was only a few years ago tleatilts presented at the annual lattice
symposium were largely in the quenched approximation, waitherror which was not possible
to quantify reliably. We then moved on to a brief period wiyndmical quarks with masses of
O(500) MeV or so until today we arrive at simulations with almost piogl pions. This improve-
ment has to be continued vigorously if precision flavour pds;swvhich has been the focus of this
talk, is to play a complementary role to large discovery experiments at the LHC in unravelling
the next level of fundamental physics. As was noted in seawekier, there are quantities for
which a large amount of experimental data is available, @tdoy which we do not yet know how
to begin formulating the calculations to make them accéssiblattice studies.

At the previous lattice conference which Guido Martine#ied to organise which was held
in 1989 in Capri, Ken Wilson made the seemingly pessimistdigtion that it will take about 30
years to have precision Lattice QCD. We only have 9 yeardddftilfill the prediction, but we are
now well on our way.
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