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Calculation of Helium nuclei in quenched lattice QCD

1. Introduction

The atomic nuclei have been historically treated as collections of protonseartibns. The
great success of the nuclear shell model since 1849 [1, 2], explaiménguclear magic numbers
and detailed spectroscopy, has established that protons and new¢rees/agyood effective degrees
of freedom at the nuclear energy scale of a few MeV. Nonethelesge&3 later, we know for
certain that protons and neutrons are made of quarks and gluons lathvssare governed by QCD.
Itis a great challenge to quantitatively understand the structure andmpyab known nuclei based
on the first principle of QCD. This direct approach will be more importadtiadispensable if we
are to extract reliable predictions for experimentally unknown nuclei in gwdran rich regions
of the nuclear chart. In this article we address the fundamental questior megkarch in this
direction, namely the binding energies of nuclei.

Lattice QCD study of multi-baryon states goes back a long time, starting with Hydib 48]
in the 80’s [#] and deuteron in the early 90[b [5]. More recently, exgtion of three baryon states
began [[p]. So far, however, there is no established evidence singpbound state formation in
these channels. An exception is a model study in the strong coupling limit of |G [[7].

We attempt to go a step further in mass number and examine the helium nucleiatgpe
“He with the mass numbéy= 4. Besides the obvious physical interest as the first natural element
beyond hydrogen, it is also the system where technical difficulties ofiéer contractions specific
to nuclei with a large mass number appear in a non-trivial way. On the o#imet, the binding
energy drops down to a large value/f = 28.3 MeV for the*He nucleus, making us hopeful that
observing the bound state nature might be easier than the lighter nuclei.

The organization of this article is as follows. In SHc. 2 we review previtugies for bound
states in multi-baryon systems from lattice QCD. The computational issues witbsstfdnulti-
baryon states and their solutions employed in this work are briefly explairgedB. The simula-
tion details and the results for tHele and®*He channels are presented in 9éc. 4. A brief summary
and a look toward future are given in Sg¢f. 5. The results in this article bese reported in

Ref. [8].

2. Historical perspective

Bound states in multi-baryon systems have been investigated by severas studttice QCD.
For systems with two baryons, the first study was the search for the HydiharAccording to
Jaffe [3] the H dibaryon having strangenéss- —2 and isospirl = 0 channel was expected to
have a large binding energy 6{(100) MeV. Most of the quenched lattice QCD studi@s[[4] 9, 10,
[11,[12] concluded that the H dibaryon bound state does not exist. el QCD Collaboration
observed a small, negative energy stifta — 2my = —4.1(1.2)(1.4) MeV [[L3], in this channel.
They concluded, however, that the evidence is not strong enougheatalisk the existence of the
H dibaryon, and that further study is necessary with different volurmis. latter point is related
to the computational problem of the nucleus calculation, which we will discusginext section.

Deuteron is a bound state of two nucleons in38eandl = 0 channel. Nucleon-nucleon scat-
tering in this channel and also in th& channel was first studied in quenched QCHTH, 14]. This
work was followed by a partially-quenched mixed actiprj [15] &d= 2+ 1 anisotropic Wilson
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Figure 1: Scattering length fotS (left) and3S; (right) channels. Circle, square, diamond, and triangle
denote results for quencheﬂ 14], mixed actiErl [15], twateon wave functiormG], and anisotropic
Wilson @] calculations, respectively.

action [1B] simulations. Extraction of nuclear force between two nucleasdben investigated in
quenched and 2+1 flavor QCPT16]{7] 18]. Results for the scattemygHsag from these studies
are summarized in Fig] 1. The scattering lengths in the two channels are alewtstatiin each
group. The results, however, have large discrepancies betweenotygsg An even more prob-
lematic issue is that the absolute value of the lattice results is much smaller than ¢hienexypal
values,ag = 23.7 fm andag = —5.47 fm for thelS and3S; channels, respectively. The lattice
results do not show strong dependence on the pion mass at the regianthdnealculations were
carried outm;>0.3 GeV. In order to explain the experimental values, the scattering lengtks ha
to vary significantly when calculations near the physical quark mass afectaut in future. We
should also note that all these studies assumed that the deuteron statedambfdr the heavy
pion mass employed in the calculations.

Recently not only two-baryon systems but also three-baryon systerasbleaw investigated
using lattice QCD. NPLQCD Collaboration has tried a feasibility study of theggdm systems
focusing on the°=n and thennp (triton) channels. They found both interactions to be repul-
sive [6,[19], which indicates that the triton is not bound for the paramttkes for the calculation.

In this conference several studies of two- and three-baryon systenesreported. HALQCD
Collaboration studied (i) the energy dependence of the nuclear fofte([@ the nuclear force
in the flavor SU(3) limit [2]L], (iii) extraction of the two-baryon forces in aupted channel with
the variational method P4, P3], and (iv) an exploratory study of efitvacf the three-nucleon
force [24]. In multi-meson systems, NPLQCD Collaboration proposed arsi&n relation ap-
proach for multi-meson correlation functiorjs][25] 26] to largely reducetimeputational cost of
the correlation functions.

3. Computational issues with nuclei

There are several computational difficulties in the calculation of the multielmabpund state
in lattice QCD. They are : 1) exponential increase of statistical erroa@dfial growth of fermion
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Wick contractions, and 3) identification of bound state. While we avoid theofirs by an unphys-
ical heavy quark mass, we propose solutions for the second and tobi@prs. Let us discuss each
in turn.

3.1 Exponential increase of statistical error

An estimate of the statistical noise to signal ratio for the correlation functioneohtitleus
consisting ofNy nucleons is knowr[]27] to be proportional to

1 3
N —— t 3.1
,—NmeaseXp< N |:mN zmn} >7 (3.1)

wheremy; andmy are the masses of the pion and nucleon, respectiMglyasis the number of
measurement, artds the separation between the source and sink time slices. The statistical error
exponentially increases as the number of nucleon increases as welkeasthehquark mass de-
creases. We aim to treat helium nuclei in this work, so Mis fixed to four and three fotHe
and®He channels, respectively. Since our main aim is to explore nucleus daosglaand since
the difficulty of controlling statistical fluctuations toward the region of lighter pioass is well
known, we use the heavy quark mass correspondimg;te- 0.8 GeV. Even then we had to carry
outO(10°) measurements.

While this strategy would be acceptable for a feasibility test of calculation@éns, we need
novel methods to solve this problem for a more realistic calculation near tiscghguark mass.
We leave this task in future.

3.2 Factorial growth of Wick contractions

Another computational problem for multi-nucleon systems is a factorially lawugeber of
Wick contractions of quark-antiquark fields required for evaluationk@hucleus correlation func-
tions. A naive counting would givé&2N, + Nn)! (2N, + Np)! for a nucleus composed &f, protons
andN, neutrons, which quickly becomes prohibitively large beyond three-nncgstemse.g.,
2880 for®He and 518400 fotHe.

This number, however, contains equivalent contractions under timeupetion symmetry in
terms of the protons or the neutrons in the interpolating operator. We caceréte computational
cost by avoiding the redundancy. In the case ofthe nucleus which consists of the same number
of protons and neutrons, the isospin symmetry also helps us reduce #ssalgccontractions.
After a scrutiny of the remaining equivalent contractions by a computemaetiat only 1107 (93)
contractions are required for thle (He) nucleus correlation function. We have made a numerical
test that the result with the reduced contractions reproduces the one avithlitbontractions on a
configuration.

For an additional technique to save the computational cost of the nucleakation functions,
we make a block of three quark propagators where a nucleon opetlitiararo spatial momentum
is constructed in the sink time slice. In this procedure we can incorporatetimation symmetry
of two up (down) quarks in a proton (neutron) sink operator. This is a sitripleto calculate v
contractions simultaneously. We also prepare several combinations of dh@deks which are
useful for the construction of the nucleus correlators.
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L Neont Nmeas accept.(%) mg[GeV] my[GeV]

24 2500 2 93 0.8000(3) 1.619(2)
48 400 12 03 0.7999(4) 1.617(2)
96 200 12 68 0.8002(3) 1.617(2)

Table 1: Number of configurationd\;onf), Nnumber of measurements on each configuratign4d, accep-
tance rate in the HMC algorithm, pion mass,{) and nucleon massry,).

3.3 Identification of bound state

A general issue with numerical calculations for exploring bound state twwmés to dis-
tinguish the physical binding energy from the energy shift due to the fiitenve effect in the
attractive scattering systerp |28 49] 30]. The problem is made more tifiicunuclei because
the binding energyAE of the nucleus consisting &y nucleons with the massw is very tiny
compared with the madd of the nucleusAE /M ~ O(10~3) with AE = Nymy — M.

One way to solve the problem is to investigate the volume dependence of theretkasergy
shift: In the attractive scattering system the energy shift is proportioriglitdat the leading order
in the /L expansion[[28][ 31], while the physical binding energy remains at a fiaitgevat the
infinite spatial volume limit.

If the volume is not large enough, it is difficult to distinguish a constant feotylL® behavior
in the energy shift. Thus, in our simulation we employ large volumes as muchsagje and
choose three spatial extents corresponding to 3.1, 6.1 and 12.3 fm. ghsetlawo volumes are
much larger than those employed in current numerical simulations. Thejdghrawvide sufficient
room for the helium nuclei.

4. A quenched calculation of Helium nuclei

4.1 Simulation details

We carry out calculations on quenched configurations generated witlvéisaki gauge ac-
tion [B2] atB = 2.416 whose lattice spacing &= 0.128 fm determined withy = 0.49 fm as an
input [B3]. We employ the HMC algorithm with the Omelyan-Mryglod-Folk integrd4, [35].
The step size is chosen to yield reasonable acceptance rate preserzbi]ih. We take three lat-
tice sizes| 3 x T = 243 x 64, 48 x 48 and 98 x 48, to investigate the spatial volume dependence
of the energy difference between the ground state of the nucleusaltsarththe free multi-nucleon
states. The physical spatial extents are 3.1, 6.1 and 12.3 fm, respectively

We use the tadpole improved Wilson action witlyy = 1.378 [33]. As discussed in the pre-
vious section, since it becomes harder to obtain a reasonable signas¢oraiio at lighter quark
masses for the multi-nucleon system, we employ a heavy quark mass 113482 which gives
m;; = 0.8 GeV for the pion mass andy = 1.6 GeV for the nucleon mass. Statistics are increased
by repeating the measurement of the nucleus correlation functions withuhmegmints in differ-
ent time slices on each configuration. The numbers for the configuratimhthe measurements
on each configuration are summarized in Tdble 1. We separate 100 tigigtteiween each mea-
surement witht = 1 for the trajectory length. The errors are estimated by the jackknife amalys
choosing 200 trajectories for the bin size.
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The quark propagators are solved with the periodic boundary conditialh ine spatial and
temporal directions, and using the exponentially smeared source

qxt) =5 Ae BVqy.t) (4.1)
y

after the Coulomb gauge fixing.is the quark field at the source time slice @& are the smearing
parameters. On each volume we employ two sets of the smearing paraniat&s= (0.5,0.5)
and(0.5,0.1) for L = 24 and(0.5,0.5) and(1.0,0.4) for L = 48 and 96. Effective mass plots with
different sources, which are shown later, help us confirm the gretatd in the nucleus channel.
Hereafter the first and the second smearing parameter sets aredébesiee’S, »", respectively.

The interpolating operator for the proton is definegas= €apc([Ua)'Cysdy)ug whereC = yu1p
anda anda, b, c are the Dirac index and the color indices, respectively. The neutraatmpr, is
obtained by replacing? by dZ in the proton operator. To save the computational cost we use the
nonrelativistic quark operator, in which the Dirac index is restricted to @ components.

The“*He nucleus has zero total angular momentum and positive F&rigy0* with the isospin
singletl = 0. We employ the simplegiHe interpolating operator with the zero orbital angular
momentum_ = 0, and hencd = Swith Sbeing the total spin. Such an operator was already given
long time ago in Ref.[[36],

*He=(xn-xm)/V2 (4.2)

where
X=(H—+=-]+-+—+-[F——+H-[-++-])/2 (4.3)
X = ([+—+-]+[—+—++[+——H+ [+ +-] = 2++——] - 2[— — ++])/V12(4.4)

with +/— being up/down spin of each nucleon.,n are obtained by replacing/— in x,x by

p/n for the isospin. Each nucleon in the sink operator is projected to havespatial momentum.
We also calculate the correlation function of thée nucleus whose quantum numbers are

JP=1",1=1andl, = 1. We employ the interpolating operator in R4F][37],

*He= (|p_nyps) — |penipo) + neprpo) — [Ny pops) + [pepony) — [p_peny)) /vV6, (4.5)

with the zero momentum projection on each nucleon in the sink operator.

4.2 *He channel

Let us first present the results for thée channel. The left panel of figufk 2 shows the effective
mass plots of théHe nucleus correlators with tf& > sources on the (6.1 frfjpatial volume. We
find clear signals up tb= 12, beyond which statistical fluctuation dominates. The effective masses
with the different sources show a reasonable agreement in the platgan. réhe consistency is
also shown in the exponential fit results in the plateau region as pressntied olid lines in the
figure.

In order to determine the energy shE, precisely, we define the ratio of tiéle nucleus
correlation function divided by the fourth power of the nucleon corratafiimction,

_ G4He(t)

Rape(t) = Gn () (4.6)
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Figure 2: Effective masses fdiHe (left) and®He (right) correlation functions witB; (circle) andS, (square)
sources at spatial extent oflefm. Fit results with one standard deviation error band apessed by solid
lines.
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Figure 3: Effective energy shifts fofHe (left) and®He (right) channels in a convention (;thE,‘fff with §
(circle) andS; (square) sources at spatial extent df 6n. Square symbols are slightly shifted to positive
direction in horizontal axis for clarity. Fit results witme standard deviation error band are expressed by
solid lines.

whereGay(t) andGy (t) are obtained with the same source. The effective energy shift is extracte

" negf = in ( R
- <R(t+1)>’

once the ground states dominate in both of the correlators. In the left pRi. } we present
time dependence otAE,‘fff for the S, sources, both of which show negative values beyond the
error bars in the plateau region ok8t < 11. Note that this plateau region is reasonably consistent
with that for the effective mass of tiele nucleus correlators in the left panel of Hig. 2. The signals
of —AEF™ are lost beyond ~ 12 because of the large fluctuations in firée nucleus correlator.
We determineAE, by exponential fits of the ratios in the plateau regibs; 8 — 12 for S§; and
t=7-—12 for S, respectively. We estimate a systematic erroABf from the difference of the
central values of the fit results with the minimum or maximum time slice changetllby

Table[? summarizes the numerical values of the energy AHiftat three spatial volumes,
where the statistical and systematic errors are presented in the firstcamd garentheses, respec-

4.7)
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presented.

tively. The volume dependence AE, is plotted as a function of /L2 in the left panel of Fig[]4.
The errors in the figure are evaluated from the statistical and systematis added in quadrature.

In the following discussions in this subsection we use the combined errerreBhlts for thes, »
sources are consistent within the error bars. We observe little volumediepee foAE, indicat-

ing a bound state, rather than thd_ dependence expected for a scattering state, for the ground
state in thé'He channel.

The physical binding energ§E defined in the infinite spatial volume limit is extracted by a
simultaneous fit of the data for tif& > sources employing a fit function &fE +C/L3 with AE
andC free parameters. The/lL® term is added to allow for contamination of scattering states. A
systematic error is estimated from the difference of the central values fiff theults using the data
with the different fit ranges in the determinationZi, . The result foAE is 0.0180(62) in lattice
units, which is 2.9 away from zero as shown in the left panel of Hig. 4. We also try a puredo
state fit allowing for an exponentially small finite size correctidE andAE + Cie~ 2k with AE
andC, , free parameters. We find all the results are in agreement with reasonhlge oy 2.

Based on these analyses we conclude that the ground state of the rddastraucleon sys-
tem is bounded. An encouraging finding is thd = 27.7(9.6) MeV witha ! = 1.54 GeV agrees
with the experimental value of 28.3 MeV. However, we do not intend to sthessonsistency be-
cause our calculation is performed at the unphysically heavy pion mmgss, 0.8 GeV, and the
electromagnetic interactions and the isospin symmetry breaking effectsgheeted.

4.3 3He channel

The results of effective mass and the effective energy shift foPitreechannel with thes, »
sources are shown in the right panel of F{gs. 2 &hd 3, respectivieysthtistical error is slightly
smaller than those for thtHe channel. We determin®E, for the 3He channel as in théHe
channel, whose results are presented in the right panel of|Fig. 4 dhel[a The trend of the
volume dependence is similar to thde channel case. A simultaneous fit of the data forShe
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L AE; [MeV]

“He(S1) “He(S) He(S,) *He(S)
24 28(14)(11) 46.8(7.3)(1.6) 19.0(6.3)(6.0) 23.2(3.2)(0.5)
48 27(14)(05) 36(12)(04) 16.6(6.9)(3.2) 19.5(5.6)(2.3)
96 24(18)(12)  24(14)(03) 19.0(7.6)(4.9) 18.4(6.1)(1.9)
00 27.7(7.8)(5.5) 18.2(3.5)(2.9)

Table 2: Energy shifts for*He and®He channels on each spatial volume. Extrapolated resultiseto
infinite spatial volume limit are also presented. The firdd aacond errors are statistical and systematic,
respectively.

sources with a fit function oAE 4-C/L2 yields a finite value oAE = 18.2(4.5) MeV, with the
combined errors as in thtHe channel, in the infinite volume limit. This means the existence
of a bound state in théHe channel. Our result fahE, however, is about twice larger than the
experimental value of 7.72 MeV. The main reason could be the heavy pishengdoyed in this
calculation.

As an alternative way to view this result, we compare the binding energiesatined by the
atomic numberAE /Ny = 6.9(2.4) MeV and 6.1(1.5) MeV for théHe and3He nuclei, respec-
tively. At our unphysically heavy pion mass, the three and four nuclgstesis do not show the
experimental feature that the binding is stronger4de than for®He. We consider that this is
mainly caused by the heavy quark mass used in this calculation.

5. Toward further progress

We have addressed the issue of nuclear binding for the ca$¢ecdind®He nuclei. We have
shown that the current computational techniques and resources altowackle this issue. Albeit
in quenched QCD and for unphysically heavy pion mass, we are able sxegtridence for the
bound state nature of the ground state and the binding energies for tiese n

It is encouraging that our results for the binding energies and the iexgratal values are
of same order of magnitude. There are several issues which needcataifi however. Our
conclusion for’He seems to disagree with the recent result of NPLQCD Collabordign]6, 19
While the two simulations have been carried out under different parametgrsquark mass,
number of flavors, and volumes, further work is needed to obtain a eeusean this channel.
Furthermore we should gain a deeper understanding on how the helilenfoums a bound state
at such a heavy quark mass. Study of the nuclear force extractedtfimmvave function and
looking at the simplest nucleus, deuteron, might help to understand aliisres

A future direction of primary importance is to investigate the quark mass depeadf the
binding energies of the nuclei. There are several model studies of #rk muass dependence of
the nuclear binding energiels [38] which suggest that the quark malssearpessential role in a
guantitative understanding of the binding energies.

Another important issue is development of a strategy to calculate nuclei wigérlatomic
numbers. The number of Wick contractions quickly diverges as the atomnberincreases,
even if the redundancies are removed with various symmetries and techmiopetoyed in this
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work. At this conference, NPLQCD Collaboration presented a setanirséon relations[[29, 26]
for correlation functions for the-meson system, and also for more complex systems with multi-
species, such asrandmK systems. Similar recursion relations in multi-baryon systems might
solve the problem. We leave it to future work.
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