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Calculation of Helium nuclei in quenched lattice QCD

1. Introduction

The atomic nuclei have been historically treated as collections of protons andneutrons. The
great success of the nuclear shell model since 1949 [1, 2], explainingthe nuclear magic numbers
and detailed spectroscopy, has established that protons and neutrons are very good effective degrees
of freedom at the nuclear energy scale of a few MeV. Nonetheless, 60years later, we know for
certain that protons and neutrons are made of quarks and gluons whoselaws are governed by QCD.
It is a great challenge to quantitatively understand the structure and property of known nuclei based
on the first principle of QCD. This direct approach will be more important and indispensable if we
are to extract reliable predictions for experimentally unknown nuclei in the neutron rich regions
of the nuclear chart. In this article we address the fundamental question in the research in this
direction, namely the binding energies of nuclei.

Lattice QCD study of multi-baryon states goes back a long time, starting with H dibaryon [3]
in the 80’s [4] and deuteron in the early 90’s [5]. More recently, exploration of three baryon states
began [6]. So far, however, there is no established evidence supporting bound state formation in
these channels. An exception is a model study in the strong coupling limit of latticeQCD [7].

We attempt to go a step further in mass number and examine the helium nuclei, especially
4He with the mass numberA = 4. Besides the obvious physical interest as the first natural element
beyond hydrogen, it is also the system where technical difficulties of fermion contractions specific
to nuclei with a large mass number appear in a non-trivial way. On the other hand, the binding
energy drops down to a large value of∆E = 28.3 MeV for the4He nucleus, making us hopeful that
observing the bound state nature might be easier than the lighter nuclei.

The organization of this article is as follows. In Sec. 2 we review previous studies for bound
states in multi-baryon systems from lattice QCD. The computational issues with studies of multi-
baryon states and their solutions employed in this work are briefly explained inSec. 3. The simula-
tion details and the results for the4He and3He channels are presented in Sec. 4. A brief summary
and a look toward future are given in Sec. 5. The results in this article havebeen reported in
Ref. [8].

2. Historical perspective

Bound states in multi-baryon systems have been investigated by several studies in lattice QCD.
For systems with two baryons, the first study was the search for the H dibaryon. According to
Jaffe [3] the H dibaryon having strangenessS= −2 and isospinI = 0 channel was expected to
have a large binding energy ofO(100) MeV. Most of the quenched lattice QCD studies [4, 9, 10,
11, 12] concluded that the H dibaryon bound state does not exist. Recently NPLQCD Collaboration
observed a small, negative energy shift,EΛΛ −2mΛ = −4.1(1.2)(1.4) MeV [13], in this channel.
They concluded, however, that the evidence is not strong enough to establish the existence of the
H dibaryon, and that further study is necessary with different volumes.The latter point is related
to the computational problem of the nucleus calculation, which we will discuss inthe next section.

Deuteron is a bound state of two nucleons in the3S1 andI = 0 channel. Nucleon-nucleon scat-
tering in this channel and also in the1S0 channel was first studied in quenched QCD [5, 14]. This
work was followed by a partially-quenched mixed action [15] andNf = 2+1 anisotropic Wilson
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Figure 1: Scattering length for1S0 (left) and3S1 (right) channels. Circle, square, diamond, and triangle
denote results for quenched [5, 14], mixed action [15], two-nucleon wave function [16], and anisotropic
Wilson [13] calculations, respectively.

action [13] simulations. Extraction of nuclear force between two nucleons has been investigated in
quenched and 2+1 flavor QCD [16, 17, 18]. Results for the scattering lengthsa0 from these studies
are summarized in Fig. 1. The scattering lengths in the two channels are almost identical in each
group. The results, however, have large discrepancies between the groups. An even more prob-
lematic issue is that the absolute value of the lattice results is much smaller than the experimental
values,a0 = 23.7 fm anda0 = −5.47 fm for the1S0 and3S1 channels, respectively. The lattice
results do not show strong dependence on the pion mass at the region where the calculations were
carried out,mπ∼>0.3 GeV. In order to explain the experimental values, the scattering lengths have
to vary significantly when calculations near the physical quark mass are carried out in future. We
should also note that all these studies assumed that the deuteron state is not bound for the heavy
pion mass employed in the calculations.

Recently not only two-baryon systems but also three-baryon systems have been investigated
using lattice QCD. NPLQCD Collaboration has tried a feasibility study of three-baryon systems
focusing on theΞ0Ξ0n and thennp (triton) channels. They found both interactions to be repul-
sive [6, 19], which indicates that the triton is not bound for the parameterstaken for the calculation.

In this conference several studies of two- and three-baryon systems were reported. HALQCD
Collaboration studied (i) the energy dependence of the nuclear force [20], (ii) the nuclear force
in the flavor SU(3) limit [21], (iii) extraction of the two-baryon forces in a coupled channel with
the variational method [22, 23], and (iv) an exploratory study of extraction of the three-nucleon
force [24]. In multi-meson systems, NPLQCD Collaboration proposed a recursion relation ap-
proach for multi-meson correlation functions [25, 26] to largely reduce thecomputational cost of
the correlation functions.

3. Computational issues with nuclei

There are several computational difficulties in the calculation of the multi-baryon bound state
in lattice QCD. They are : 1) exponential increase of statistical error, 2) factorial growth of fermion
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Wick contractions, and 3) identification of bound state. While we avoid the first one by an unphys-
ical heavy quark mass, we propose solutions for the second and third problems. Let us discuss each
in turn.

3.1 Exponential increase of statistical error

An estimate of the statistical noise to signal ratio for the correlation function of the nucleus
consisting ofNN nucleons is known [27] to be proportional to

1√
Nmeas

exp

(

NN

[

mN − 3
2

mπ

]

t

)

, (3.1)

wheremπ andmN are the masses of the pion and nucleon, respectively,Nmeas is the number of
measurement, andt is the separation between the source and sink time slices. The statistical error
exponentially increases as the number of nucleon increases as well as when the quark mass de-
creases. We aim to treat helium nuclei in this work, so thatNN is fixed to four and three for4He
and3He channels, respectively. Since our main aim is to explore nucleus calculations, and since
the difficulty of controlling statistical fluctuations toward the region of lighter pionmass is well
known, we use the heavy quark mass corresponding tomπ = 0.8 GeV. Even then we had to carry
outO(103) measurements.

While this strategy would be acceptable for a feasibility test of calculation of nucleus, we need
novel methods to solve this problem for a more realistic calculation near the physical quark mass.
We leave this task in future.

3.2 Factorial growth of Wick contractions

Another computational problem for multi-nucleon systems is a factorially large number of
Wick contractions of quark-antiquark fields required for evaluations ofthe nucleus correlation func-
tions. A naive counting would give(2Np +Nn)!(2Nn +Np)! for a nucleus composed ofNp protons
andNn neutrons, which quickly becomes prohibitively large beyond three-nucleon systems,e.g.,
2880 for3He and 518400 for4He.

This number, however, contains equivalent contractions under the permutation symmetry in
terms of the protons or the neutrons in the interpolating operator. We can reduce the computational
cost by avoiding the redundancy. In the case of the4He nucleus which consists of the same number
of protons and neutrons, the isospin symmetry also helps us reduce the necessary contractions.
After a scrutiny of the remaining equivalent contractions by a computer we find that only 1107 (93)
contractions are required for the4He (3He) nucleus correlation function. We have made a numerical
test that the result with the reduced contractions reproduces the one with the full contractions on a
configuration.

For an additional technique to save the computational cost of the nucleus correlation functions,
we make a block of three quark propagators where a nucleon operator with zero spatial momentum
is constructed in the sink time slice. In this procedure we can incorporate the permutation symmetry
of two up (down) quarks in a proton (neutron) sink operator. This is a simpletrick to calculate 2NN

contractions simultaneously. We also prepare several combinations of the two blocks which are
useful for the construction of the nucleus correlators.
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L Nconf Nmeas accept.(%) mπ [GeV] mN [GeV]

24 2500 2 93 0.8000(3) 1.619(2)
48 400 12 93 0.7999(4) 1.617(2)
96 200 12 68 0.8002(3) 1.617(2)

Table 1: Number of configurations (Nconf), number of measurements on each configuration (Nmeas), accep-
tance rate in the HMC algorithm, pion mass (mπ ) and nucleon mass (mN).

3.3 Identification of bound state

A general issue with numerical calculations for exploring bound state formation is to dis-
tinguish the physical binding energy from the energy shift due to the finite volume effect in the
attractive scattering system [28, 29, 30]. The problem is made more difficult for nuclei because
the binding energy∆E of the nucleus consisting ofNN nucleons with the massmN is very tiny
compared with the massM of the nucleus:∆E/M ∼ O(10−3) with ∆E = NNmN −M.

One way to solve the problem is to investigate the volume dependence of the measured energy
shift: In the attractive scattering system the energy shift is proportional to1/L3 at the leading order
in the 1/L expansion [28, 31], while the physical binding energy remains at a finite value at the
infinite spatial volume limit.

If the volume is not large enough, it is difficult to distinguish a constant froma 1/L3 behavior
in the energy shift. Thus, in our simulation we employ large volumes as much as possible, and
choose three spatial extents corresponding to 3.1, 6.1 and 12.3 fm. The largest two volumes are
much larger than those employed in current numerical simulations. They should provide sufficient
room for the helium nuclei.

4. A quenched calculation of Helium nuclei

4.1 Simulation details

We carry out calculations on quenched configurations generated with theIwasaki gauge ac-
tion [32] atβ = 2.416 whose lattice spacing isa = 0.128 fm determined withr0 = 0.49 fm as an
input [33]. We employ the HMC algorithm with the Omelyan-Mryglod-Folk integrator [34, 35].
The step size is chosen to yield reasonable acceptance rate presented in Table 1. We take three lat-
tice sizes,L3×T = 243×64, 483×48 and 963×48, to investigate the spatial volume dependence
of the energy difference between the ground state of the nucleus channel and the free multi-nucleon
states. The physical spatial extents are 3.1, 6.1 and 12.3 fm, respectively.

We use the tadpole improved Wilson action withcSW = 1.378 [33]. As discussed in the pre-
vious section, since it becomes harder to obtain a reasonable signal-to-noise ratio at lighter quark
masses for the multi-nucleon system, we employ a heavy quark mass atκ = 0.13482 which gives
mπ = 0.8 GeV for the pion mass andmN = 1.6 GeV for the nucleon mass. Statistics are increased
by repeating the measurement of the nucleus correlation functions with the source points in differ-
ent time slices on each configuration. The numbers for the configurations and the measurements
on each configuration are summarized in Table 1. We separate 100 trajectories between each mea-
surement withτ = 1 for the trajectory length. The errors are estimated by the jackknife analysis
choosing 200 trajectories for the bin size.
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The quark propagators are solved with the periodic boundary condition inall the spatial and
temporal directions, and using the exponentially smeared source

q′(~x, t) = ∑
~y

Ae−B|~x−~y|q(~y, t) (4.1)

after the Coulomb gauge fixing.q is the quark field at the source time slice andA,Bare the smearing
parameters. On each volume we employ two sets of the smearing parameters:(A,B) = (0.5,0.5)

and(0.5,0.1) for L = 24 and(0.5,0.5) and(1.0,0.4) for L = 48 and 96. Effective mass plots with
different sources, which are shown later, help us confirm the groundstate in the nucleus channel.
Hereafter the first and the second smearing parameter sets are referred to as "S1,2", respectively.

The interpolating operator for the proton is defined aspα = εabc([ua]
tCγ5db)uα

c whereC = γ4γ2

andα anda,b,c are the Dirac index and the color indices, respectively. The neutron operatornα is
obtained by replacinguα

c by dα
c in the proton operator. To save the computational cost we use the

nonrelativistic quark operator, in which the Dirac index is restricted to upper two components.
The4He nucleus has zero total angular momentum and positive parityJP = 0+ with the isospin

singlet I = 0. We employ the simplest4He interpolating operator with the zero orbital angular
momentumL = 0, and henceJ = Swith Sbeing the total spin. Such an operator was already given
long time ago in Ref. [36],

4He= (χη −χη)/
√

2, (4.2)

where

χ = ([+−+−]+ [−+−+]− [+−−+]− [−++−])/2, (4.3)

χ = ([+−+−]+ [−+−+]+[+−−+]+[−++−]−2[++−−]−2[−−++])/
√

12 (4.4)

with +/− being up/down spin of each nucleon.η ,η are obtained by replacing+/− in χ,χ by
p/n for the isospin. Each nucleon in the sink operator is projected to have zerospatial momentum.

We also calculate the correlation function of the3He nucleus whose quantum numbers are
JP = 1

2
+

, I = 1
2 andIz = 1

2. We employ the interpolating operator in Ref. [37],

3He= (|p−n+p+〉− |p+n+p−〉+ |n+p+p−〉− |n+p−p+〉+ |p+p−n+〉− |p−p+n+〉)/
√

6, (4.5)

with the zero momentum projection on each nucleon in the sink operator.

4.2 4He channel

Let us first present the results for the4He channel. The left panel of figure 2 shows the effective
mass plots of the4He nucleus correlators with theS1,2 sources on the (6.1 fm)3 spatial volume. We
find clear signals up tot ≈ 12, beyond which statistical fluctuation dominates. The effective masses
with the different sources show a reasonable agreement in the plateau region. The consistency is
also shown in the exponential fit results in the plateau region as presented by the solid lines in the
figure.

In order to determine the energy shift∆EL precisely, we define the ratio of the4He nucleus
correlation function divided by the fourth power of the nucleon correlation function,

R4He(t) =
G4He(t)
(GN(t))4 , (4.6)
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Figure 2: Effective masses for4He (left) and3He (right) correlation functions withS1 (circle) andS2 (square)
sources at spatial extent of 6.1 fm. Fit results with one standard deviation error band are expressed by solid
lines.
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Figure 3: Effective energy shifts for4He (left) and3He (right) channels in a convention of−∆Eeff
L with S1

(circle) andS2 (square) sources at spatial extent of 6.1 fm. Square symbols are slightly shifted to positive
direction in horizontal axis for clarity. Fit results with one standard deviation error band are expressed by
solid lines.

whereG4He(t) andGN(t) are obtained with the same source. The effective energy shift is extracted
as

−∆Eeff
L = ln

(

R(t)
R(t +1)

)

, (4.7)

once the ground states dominate in both of the correlators. In the left panelof Fig. 3 we present
time dependence of−∆Eeff

L for the S1,2 sources, both of which show negative values beyond the
error bars in the plateau region of 8≤ t ≤ 11. Note that this plateau region is reasonably consistent
with that for the effective mass of the4He nucleus correlators in the left panel of Fig. 2. The signals
of −∆Eeff

L are lost beyondt ≈ 12 because of the large fluctuations in the4He nucleus correlator.
We determine∆EL by exponential fits of the ratios in the plateau region,t = 8− 12 for S1 and
t = 7−12 for S2, respectively. We estimate a systematic error of∆EL from the difference of the
central values of the fit results with the minimum or maximum time slice changed by±1.

Table 2 summarizes the numerical values of the energy shift∆EL at three spatial volumes,
where the statistical and systematic errors are presented in the first and second parentheses, respec-
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Figure 4: Spatial volume dependences for−∆EL = M−NNmN in GeV units for4He (left) and3He (right)
nuclei with S1 (open square) andS2 (open diamond) sources. Statistical and systematic errorsare added
in quadrature. Diamond symbols are slightly shifted to positive direction in horizontal axis for clarity.
Extrapolated results to the infinite spatial volume limit (filled circle) and experimental values (star) are also
presented.

tively. The volume dependence of∆EL is plotted as a function of 1/L3 in the left panel of Fig. 4.
The errors in the figure are evaluated from the statistical and systematic errors added in quadrature.
In the following discussions in this subsection we use the combined error. The results for theS1,2

sources are consistent within the error bars. We observe little volume dependence for∆EL indicat-
ing a bound state, rather than the 1/L3 dependence expected for a scattering state, for the ground
state in the4He channel.

The physical binding energy∆E defined in the infinite spatial volume limit is extracted by a
simultaneous fit of the data for theS1,2 sources employing a fit function of∆E +C/L3 with ∆E
andC free parameters. The 1/L3 term is added to allow for contamination of scattering states. A
systematic error is estimated from the difference of the central values of thefit results using the data
with the different fit ranges in the determination of∆EL. The result for∆E is 0.0180(62) in lattice
units, which is 2.9σ away from zero as shown in the left panel of Fig. 4. We also try a pure bound
state fit allowing for an exponentially small finite size correction:∆E and∆E +C1e−C2L with ∆E
andC1,2 free parameters. We find all the results are in agreement with reasonable values ofχ2.

Based on these analyses we conclude that the ground state of the measured four-nucleon sys-
tem is bounded. An encouraging finding is that∆E = 27.7(9.6) MeV witha−1 = 1.54 GeV agrees
with the experimental value of 28.3 MeV. However, we do not intend to stressthe consistency be-
cause our calculation is performed at the unphysically heavy pion mass,mπ = 0.8 GeV, and the
electromagnetic interactions and the isospin symmetry breaking effects are neglected.

4.3 3He channel

The results of effective mass and the effective energy shift for the3He channel with theS1,2

sources are shown in the right panel of Figs. 2 and 3, respectively. The statistical error is slightly
smaller than those for the4He channel. We determine∆EL for the 3He channel as in the4He
channel, whose results are presented in the right panel of Fig. 4 and Table 2. The trend of the
volume dependence is similar to the4He channel case. A simultaneous fit of the data for theS1,2

8
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L ∆EL [MeV]
4He(S1) 4He(S2) 3He(S1) 3He(S2)

24 28(14)(11) 46.8(7.3)(1.6) 19.0(6.3)(6.0) 23.2(3.2)(0.5)
48 27(14)(05) 36(12)(04) 16.6(6.9)(3.2) 19.5(5.6)(2.3)
96 24(18)(12) 24(14)(03) 19.0(7.6)(4.9) 18.4(6.1)(1.9)
∞ 27.7(7.8)(5.5) 18.2(3.5)(2.9)

Table 2: Energy shifts for4He and3He channels on each spatial volume. Extrapolated results tothe
infinite spatial volume limit are also presented. The first and second errors are statistical and systematic,
respectively.

sources with a fit function of∆E +C/L3 yields a finite value of∆E = 18.2(4.5) MeV, with the
combined errors as in the4He channel, in the infinite volume limit. This means the existence
of a bound state in the3He channel. Our result for∆E, however, is about twice larger than the
experimental value of 7.72 MeV. The main reason could be the heavy pion mass employed in this
calculation.

As an alternative way to view this result, we compare the binding energies normalized by the
atomic number:∆E/NN = 6.9(2.4) MeV and 6.1(1.5) MeV for the4He and3He nuclei, respec-
tively. At our unphysically heavy pion mass, the three and four nucleon systems do not show the
experimental feature that the binding is stronger for4He than for3He. We consider that this is
mainly caused by the heavy quark mass used in this calculation.

5. Toward further progress

We have addressed the issue of nuclear binding for the case of4He and3He nuclei. We have
shown that the current computational techniques and resources allow usto tackle this issue. Albeit
in quenched QCD and for unphysically heavy pion mass, we are able to extract evidence for the
bound state nature of the ground state and the binding energies for these nuclei.

It is encouraging that our results for the binding energies and the experimental values are
of same order of magnitude. There are several issues which need clarification, however. Our
conclusion for3He seems to disagree with the recent result of NPLQCD Collaboration [6, 19].
While the two simulations have been carried out under different parameters, e.g., quark mass,
number of flavors, and volumes, further work is needed to obtain a consensus in this channel.
Furthermore we should gain a deeper understanding on how the helium nuclei forms a bound state
at such a heavy quark mass. Study of the nuclear force extracted fromthe wave function and
looking at the simplest nucleus, deuteron, might help to understand our results.

A future direction of primary importance is to investigate the quark mass dependence of the
binding energies of the nuclei. There are several model studies of the quark mass dependence of
the nuclear binding energies [38] which suggest that the quark masses play an essential role in a
quantitative understanding of the binding energies.

Another important issue is development of a strategy to calculate nuclei with larger atomic
numbers. The number of Wick contractions quickly diverges as the atomic number increases,
even if the redundancies are removed with various symmetries and techniques employed in this
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work. At this conference, NPLQCD Collaboration presented a set of recursion relations [25, 26]
for correlation functions for then-meson system, and also for more complex systems with multi-
species, such asn-π andm-K systems. Similar recursion relations in multi-baryon systems might
solve the problem. We leave it to future work.
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