
P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks

Steven Gottlieb∗

National Center for Supercomputing Applications, University of Illinois
and Indiana University, Bloomington, IN 47405, USA
E-mail: sg@indiana.edu

Guochun Shi
National Center for Supercomputing Applications, University of Illinois
E-mail: gshi@ncsa.illinois.edu

Aaron Torok
Indiana University, Bloomington, IN 47405, USA
E-mail: amtorok@indiana.edu

Volodymyr Kindratenko
National Center for Supercomputing Applications, University of Illinois
E-mail: kindr@ncsa.illinois.edu

We have been extending the QUDA GPU code developed at Boston University to include the
case of improved staggered quarks. Improved staggered quarks such as asqtad and HISQ require
both first and third nearest neighbor terms in the Dirac operator. We call the corresponding links
fatlinks and longlinks. The fatlinks are not unitary, and staggered phases are included in the links,
so link reconstruction techniques may either be inapplicable or require modification. A single
precision inverter using compressed storage for the longlinks achieves a speed of 100 GF/s on an
NVIDIA GTX 280 GPU on a 243×32 lattice.

In addition to the inverter code, we have code for fatlink computation, gauge force and fermion

force. They run at 170, 186 and 107 GF/s, respectively, for similar conditions to the solver speed

above. The single GPU code is currently in production on NCSA’s AC cluster for the study of

electromagnetic effects. The double precision multimass solver is running at 20 GF/s, about 80%

of the speed of an 8-node or 64-core job on Fermilab’s jpsi cluster. The AC cluster has C1060

Tesla boards with lower memory bandwidth than the GTX 280, where the DP inverter runs at 33

GF/s. Multi-GPU code is in development.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:sg@indiana.edu
mailto:gshi@ncsa.illinois.edu
mailto:amtorok@indiana.edu
mailto:kindr@ncsa.illinois.edu

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks Steven Gottlieb

1. Introduction

The MILC Collaboration has had a very long relationship with the National Center for Super-
computing Applications (NCSA) dating to the early 1990s. In addition to providing cycles, NCSA
has been helpful with code development. For example, NCSA’s Innovative Systems Laboratory
was responsible for porting the MILC code to IBM’s Cell Broadband Engine [1]. As interest in the
Cell/B.E. waned and interest in GPU computing increased, efforts to port MILC to the latter be-
gan. Initial efforts at long distance collaboration mostly using student labormet with very limited
success [2]. However, a sabbatical provided an opportunity starting inAugust, 2009 for all of us to
be in the same place and for much more rapid progress.

The Boston University group has been developing GPU code for some time [3] for a Wil-
son/Clover inverter. Their approach is known as QUDA. A workshop atJefferson Laboratory
provided an opportunity for two of us to meet with a number of other developers. As most of the
MILC work has been using improved staggered or asqtad quarks, it wasnatural to extend QUDA
to include support for staggered quarks.

2. New staggered code

Our initial effort was directed at writing a Dslash operator for a single GPU. Once that was
running, a conjugate gradient solver was written and then extended to a multimass solver. The next
piece of code to be tackled was the fat link computation. After the fat link code was completed,
the gauge and fermion force routines were ported to the GPU. Finally, wrappers were written to
allow the MILC code to call the GPU routines rather than doing the computation onthe CPU for
each of the above phases of the code. These wrappers were designed to take care of all the work of
tranforming MILC’s data structures to those required for the GPU, sending the input information
to the GPU, retrieving the results and placing them into the normal MILC format.

This code development at NCSA was done independently of ongoing developments at BU.
There were changes to the QUDA code that required some effort to mergethe Wilson and stag-
gered codes. A private version of the merged code was available to the developers for some time;
however, public release of QUDA version 0.3 (the version that includes support for both Wilson
and staggered quarks on a single GPU) did not occur until October 1, 2010.

Given the size of the configurations MILC has been generating and the limitedmemory on a
single GPU, it is important to develop multi-GPU code. This had already been done for Wilson type
quarks [4]. Multi-GPU code for staggered quarks is working, and we report here on benchmark
results. So far, the lattice is only cut in the time direction. Communication and computation are
overlapped by employing both interior and exterior kernels. If time slices 0, 1, . . ., Tl − 1, are
assigned to the node, the interior kernel completes contributions from all directions on time slices
3, 4, . . ., Tl − 4. Because of the Naik term which extends three links in the time direction, the
smallest three and largest three times on each node have off-node neighbors in the time direction.
For these time slices, the interior kernel also computes all the terms with spatial links. Once all
the required off-node spinors have arrived, the exterior kernel computes all the contributions that
depend on those spinors. The multi-GPU code is not in QUDA 0.3.

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks Steven Gottlieb

Type Cores BW SP DP RAM
(GB/s) (GF/s) (GF/s) (GB)

GTX 280 240 142 933 78 1.0

GTX 285 240 159 1062 88 1–2

Tesla C1060 240 102 933 78 4.0

Tesla S1070 four copies of above

Fermi GTX 480 480 177 1345 168 1.5

Fermi C2050 448 148 1030 515 3.0

Table 1: Characteristics of systems studied, including model type,number of cores, peak bandwidth of GPU
memory, peak floating point speed in single and double precision, and total GPU memory.

There are other important differences between the Wilson and staggeredcodes. We have
already mentioned that the Naik term requires more planes of spinors from neighbors. The Naik
term, or course, requires additional storage for the long links. Each longlink is the product of
threeSU(3) matrices, so it is an element ofSU(3). This means that the reconstruction methods
implemented in QUDA can be applied to the long links. In contrast, the fat links thatare part of
improved staggered actions are not elements ofSU(3), so they are not compressed in the GPU. The
reconstruction methods reduce the 18 operands required for a complex 3×3 matrix to either 12 or
8 operands [3]. In the former case, unitarity is used to compute the third rowas a cross product of
the first two rows. In the latter case, the computation of the entire matrix from only 8 parameters
requires more floating point operations. To summarize, for Wilson quarks each of the 4 links is
stored as 18, 12 or 8 operands. In the staggered case, the fat links are stored as 18 operands, and
the long links are stored as 18, 12 or 8 operands.

3. Benchmarks

Several different models of NVIDIA GPUs are available for running benchmarks or for pro-
duction running. At NCSA, there are systems with GTX 280, Tesla S1070 and Fermi GTX 480
GPUs. At Jefferson Lab, the GTX 285, Tesla C1060, S1070 and FermiGTX 480 are available.
Fermilab has systems with the Tesla S1070. At NERSC, there are nodes with Tesla C1060 and
Fermi C2050 GPUs. The Fermi GPUs are the most recent, and only the C2050 supports error cor-
rection. Table 1 details the important characteristics of each of the six GPU models that we have
run on.

In Table 2, we give the performance of the single mass and multimass conjugategradient
solvers. Four masses are used for the multimass case. This table contains results for double pre-
cision, single precision and half precision solvers [5]. The first column indicates how the long
links are reconstructed, with 18 denoting no reconstruction,i.e., all 18 operands of each link matrix
are stored on the GPU. Note that the fat links are always stored as 18 operands and that in single
precison and half precision compressed storage helps, but that for double precsion, reconstruction
reduces performance. The peak double precision floating point speedon the GTX 280 is only a
small fraction of the single precision floating point speed, so there are notas many spare flops

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks Steven Gottlieb

precision reconstruct CG(GF/s) multimass CG
(GF/s)

12 31 31
DP 8 15 16

18 33 34

12 98 92
SP 8 108 96

18 83 80

12 123 106
HP 8 128 113

18 108 98

Table 2: Performance of single and multimass CG solvers for a 243
×32 lattice on a GTX 280. Different

precisions and reconstruction techniques for the long links are shown.

to use for the reconstruction. Also, this table does not reflect additional iterations that might be
required for the lower precision solvers.

For gauge configuration generation, additional routines such as the fatlink, gauge force and
fermion force computation are necessary. Table 3 contains results for single mass and multimass
CG solvers, as well as the fat link, gauge force and fermion force. In each case, we have the speed
of the computation without the overhead of copying the initial data to the GPU andcopying the
result back to the CPU, the speed we could expect to get if we can achieve100 GB/s GPU memory
bandwidth (about 2/3 the peak) and the performance including the overhead of copying data to and
from the GPU. That overhead can be substantial for the fat link and gauge force computations, so it
is advantageous to arrange a production job so that the gauge links can remain resident in the GPU
throughout the job, and they are only copied back to the GPU when neededthere. All benchmarks
here are for single precision on a 243

×32 lattice on a GTX 280. The CG solver used 500 iterations
and 12-reconstruct was used when possible. Table 4 compares CG speeds using varions precisions
and reconstruction methods on different hardware and shows the costof taking advantage of error
correction on the C2050 processor.

We also have some weak scaling results for multiGPU benchmarks on the AC cluster at NCSA
(Table 5) that uses S1070 GPU servers and the Dirac cluster at NERSC (Table 6) using C2050 GPU
cards. These are all done with a 243

×32 local volume. Message passing performance is important,
so we have measured the time for each phase. For example, with the GTX 280,we found that for
single precision, it takes 0.29 ms= 3.3 GB/s to pack the GPU data and copy to host; 0.16 ms=

6.14 GB/s to complete the MPI transfer; and 0.2 ms= 4.8 GB/s to transfer the data from the host
to the GPU. For multiGPU running, we find that the design of the node can be very important. The
AC cluster is a few years old, and it is designed with one core per GPU (four GPUs per node). Also,
the S1070 is designed so that a pair of GPUs share a single PCI connectionto the node, so this is
an obvious point of contention. On the other hand, the Dirac cluster uses the C2050 card which
has about 50% more bandwidth to GPU memory than the S1070 and no contentionfor the PCI
bus. Further, there is only one GPU per node, two Intel 5530 quad coreCPUs capable of 5.86 GT/s

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks Steven Gottlieb

GF/s

standalone goal: assuming with PICe
100GB/s overhead

CG 98 100 71

MM-CG 92 100 71

fat link 178 168 62

gauge force 208 349 112

fermion force 111 128 94

Table 3: Performance in GF/s of single and multimass CG solvers, fat link, gauge force and fermion force
computations for a 243×32 lattice on a GTX 280. All results are for single precion and12-reconstruct is
used when possible.

GF/s

reconstruction GTX 280 GTX 480 C2050 C2050
ECC No ECC

12 29 31 20 24
DP 8 15 16 11 13

18 32 50 30 41

12 92 116 66 96
SP 8 99 126 72 100

18 79 104 57 86

12 77 154 97 122
HP 8 74 157 101 123

18 76 131 84 104

Table 4: Comparison of results for the CG solver on a 243
×32 lattice on the GTX 280 (Tesla) and Fermi

architectures. For the latter case, we have results on the GTX 480 (consumer card) and C2050 both with and
without error correction. All results are in GF/s.

and 24 GB of DDR3 1066 memory. (Newer motherboards and CPUs can useDDR3 1333 memory
and are capable of 6.4 GT/s.) In Table 7, we compare details of the time for internal and external
kernels and the communication time. These results are all for single precision using 8 reconstruct.
Note the difference in communication time between one and four GPUs on the AC cluster. This
results from contention between the different messages that need to be passed at the same time.
The contention is probably on the PCI bus. In the S1070 two GPUs share a common PCI bus.
Note that the increased time on AC when using all four GPUs results in the communication taking
so long that the GPU is stalled after completion of the interior kernel. All times are decreased on
Dirac which uses the C2050 GPU and has only one GPU per node.

4. Production experience

We have been using GPUs for calculating electromagnetic effects,i.e., for SU(3)×U(1). So

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks Steven Gottlieb

of GPUs

reconstruct 1 2 4 8 12 16 20

12 22 22 22 21 18 17 16
DP 8 13 13 13 12 11 11 10

18 23 23 23 21 18 18 17

12 58 56 43 40 32 31 31
SP 8 65 56 40 39 32 33 32

18 50 50 43 41 35 34 31

12 61 60 40 40 33 33 31
HP 8 60 59 41 39 36 31 31

18 61 59 40 40 36 29 32

Table 5: Weak scaling in study on the AC cluster at NCSA using a local volume of 243×32. All results are
in GF/s.

of GPUs

reconstruct 1 2 4

12 24 23 23
DP 8 13 12 12

18 41 41 41

12 96 94 93
SP 8 100 100 100

18 86 83 83

12 122 120 116
HP 8 123 120 119

18 104 101 101

Table 6: Weak scaling study of CG performance on the Dirac cluster at NERSC using a local volume of
243

×32. Dirac has one C2050 GPU per node and error correction was not used in this study. All results are
in GF/s.

AC: 1 GPU AC: 4 GPUs Dirac: 4 GPUs

interior kernel (ms) 3.15 3.13 1.92
exterior kernel (ms) 0.30 0.32 0.17
message time (ms) 1.79 3.94 1.19
Dslash time (ms) 3.47 4.34 2.10

Table 7: Details of Dslash timing including the times for the interior and exterior kernels, the message
passing time and total time. Three conditions are contrasted, AC using one GPU, AC using all four GPUs
on the node and Dirac using four nodes, each of which has one GPU.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
2
6

QUDA programming for staggered quarks Steven Gottlieb

far, we have only been using ensembles that fit in a single GPU. About 4,000 configurations have
been analyzed of size 203

×64 or 283×96. The physics results from this analysis are presented
in a talk by Aaron Torok [6]. Production runs have been done on the AC cluster at NCSA, the
Dirac cluster at NERSC, and at Fermilab. As an example, running on CPUs only, a job takes 6.04
node-hrs or 48.2 core-hrs, whereas running on a GPU 1.49 node-hrare required. Since the other
cores are idle, this is 11.9 core-hrs on the same cluster.

5. Where to get the code

Version 0.3 of QUDA which integrates staggered and Wilson/clover codes was released on
October 1, 2010. It can be downloaded from http://lattice.bu.edu/quda. CUDA version 3.0.14 is
required. We plan to release multiGPU code later, so if you are interested in staggered code, you
will need to contact one of authors of this paper. We also expect to have an svn repository in the
future.

6. Future

To complete the study of electromagnetic effects, we will need to run multiGPU production
jobs for some of the larger lattices. For those with spatial size 563 or 643, we are likely to need
code that cuts the lattice in both space and time dimensions. Otherwise, these ensembles will need
to be analyzed on clusters or supercomputers. We also are interested in trying to do analysis of
heavy-light mesons with GPUs. In this case, we will need code that can treat both clover and stag-
gered quarks for multiGPU jobs. Thus, this is a high priority for the next version of QUDA. Also,
the MILC lattice generation program for asqtad is essentially over, and modifications to the code
to accommodate HISQ quarks need to be made. So, there is quite a bit of code development that
remains to be done. Beyond the coding, we also need to investigate strong scaling as supercomput-
ers are now reaching for petaflop/s performance. Can we efficiently run GPU jobs that make use of
100s of GPUs, not just a few, as we are currently doing? It is essentialto decide what other parts
of our production running can profitably be shifted to GPUs.

References

[1] G. Shi, V. Kindratenko and S. Gottlieb,PoS(LATTICE 2008)026, [arXiv:0910.0262 [hep-lat]].

[2] D. Roeh, J. Troup, G. Shi, V. Kindratenko, “Porting MILC to GPU: Lessons learned”, Workshop on
using GPUs for LQCD, August 19-21 2009, Thomas Jefferson NAF, Newport News, Virginia,
http://www.ncsa.illinois.edu/˜kindr/projects/hpca/files/jlab_QCD_on_GPU_presentation.pdf .

[3] K. Barros, R. Babich, R. Brower, M. A. Clark and C. Rebbi,PoS(LATTICE 2008)045

[arXiv:0810.5365 [hep-lat]].

[4] R. Babich, M. A. Clark and B. Joo, Proc. Intl. Conf. for High Performance Computing, Networking,
Storage and Analysis (Supercomputing 2010), New Orleans, LA, Nov. 2010.

[5] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun.181, 1517
(2010) [arXiv:0911.3191 [hep-lat]].

[6] A. Torok et al., PoS(LATTICE 2010)127.

7

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2008)026
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2008)045
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE 2010)127

