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1. Worm algorithms

Monte-Carlo simulation algorithms based on all-order strong coupling orihggarameter
expansions have been known for a long tiffje [1]. Yet only the relativelgneideas of Prokof’ev
and Svistunov[[2] opened the way to the formulation of highly efficient algms. Instead of
sampling the partition function of a model the new class of algorithms samplesaageshensem-
ble that also contains the two-point-functions at all possible separatidres:worm algorithms”
that can be formulated in the loop gas representation of such an ensembédyyghow hardly
any critical slowing down. In addition the non-standard formulation oftenasakproved esti-
mators for key observables possible. The basic idea behind worm afgerighvery general and
can be applied to a large class of statistical models. Efficient algorithms eavedeveloped for
the one (real or complex) componegpft theory and tested in its Gaussian and Ising or XY-model
limits as well as at some intermediate values of the coup[inf| [B, B. [4.[b, 6, 7le Mumplicated
systems like nonlinea®(N) — o models [8],CP(N — 1) models [P] or two dimensional fermionic
systems([[7j0] 11] have been successfully simulated as well. Some of tmt development has
been summarized during this conferenicg [12].

In the following we make a first attempt to generalize the idea behind wormithgaerto the
case of gauge theories. We formulate an algorithm that samples the (gemhnaartition function
of an AbelianU (1) gauge theory.

2. Strong coupling expansion
We start from a Wilson plaquette gauge action
SUl=-B 3 Re[U(x kU (x+f,v)U~(x+ 0, 1)U~ (x,v)] (2.1)
X, U<V

wherex is a site on @-dimensional hypercubic periodic lattice of exténtin directionpy =1...D
andU (x, u) € U(1) denotes the gauge field on the link that connectsaitéh sitex+ f1. We use
lattice units throughout.

Observables in this model are products of link variables

Ul =TTU(x, p)iH (2.2)
|;| (X 1)

where we have introduced an integer valued external figddt) = j,(X) € Z. One is interested in
their expectation values

ul) = ;H (2.3)
Z[il :/DU e VY, (2.4)

whereDU denotes the invariant measured(il) on all links. Gauge and center invariance of the
action causes expectation values to vanish unless the external field satisfie

Ipju(x) =0, and (2.5)
> iu(¥) =0, (2.6)
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whered* denotes the backward nearest neighbor difference.
On each plaguette one can expand the exponential

eBRe(U): i (B)mnunm: +Zoo In(B)Un (27)

In!
mé=o 2 min!

The summation variables(x; i, v) = nyy(X) can be defined to be antisymmetricpinv. At this
stage the original group integrals can be carried out leaving behindraoms. The partition func-
tion takes the form

Z[J] = Z ( I_I Inyv(x)(B)> 5[d*n_ ﬂv (2-8)
{n} \xu<v

with the abbreviation for the constraints
5[0*n_ J] = |_| 50‘jnvu(x),ju(x)‘ (2.9)
X

The representation ed. (P.8) has been used as a starting point for-®aresimulations in[[13]
and more recently if[}4]. The authors §f][14] find that a variant of takgjorithm, that is based
on an expansion aZ[0] of the Z, gauge theory only, suffers from critical slowing down with a
dynamical exponent similar to that of a local algorithm in the standard formalafithe model.

Inspired by worm-algorithms we pursue a different direction. In spiriesys the crucial
algorithmic idea was to consider an enlarged system that allows for deédatsd to two-point
functions. Similarly in our case we consider the enlarged ensemble

z =Y p il Z[i]. (2.10)
{1}
The sum is over all possible external fielfig(x) and, as in[[i], each contribution is weighted

by some non-negative weigpt # contains now also graphs with boundaries rather than closed
surfaces only. The partition function can be written in its final form

zr=y ( [ Inw(x)(ﬁ)> pton. (2.11)
{n} \xhu<v
Expectation values with respect to this ensemble are formed in the usual way
1 —1f 4%
(On))) = gzﬁm( M Inw(x)us)) p~omn), (2.12)
{n} X, U<V

and for later convenience and in analogy to rgf. [8] we also definegeceation value with respect
to the vacuum ensemble by (oIS
n n
One can relate observables in the enlarged ensemble to those in the ongin&@rme way to
measure the expectation value of an arbitrary non-vanishing correjaten by somej, (x), is to
find some background plaquette-fidgdgl, (x) that solves the constraigtk = j. The observable

(2.13)

I N (X)+Kuy (X) (B)

onl =
[n] X, U<V Inu\,(x) (B)

(2.14)
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is then an estimator for the desired correlator
(U%) = ((aIn])o. (2.15)
In practicek will be zero almost everywhere. For rectangular loops the minimal numbactuirs

differing from one necessary in the product dq. (2.14) equals thesr ar

3. Monte-Carlo updates

We use the freedom in choosing the weight funciior to restrict the possible external fields
or boundaries to the subset containing only one non-intersecting loop &ibhwinding number
with respect to all torus directions. Such a loop can be completely chdractdry the ordered
cyclic set of sites through which it passes

W = {X1 %, Xpow)}s Xp(w)yr1=Xa. (3.1)

Consecutive sites are nearest neighb@rs = x; + fi;. If we extend the possible unit vectors to
include negative directions: 1 = —[1, plaquettes can be labeled in several equivalent ways

Nuv(X) = —N_pu(X+ 1) = =gy (X+0) =n_p_y(X+ 1+ D). (3.2)

To stochastically sample the sum €g. (R.11) we perform a sequence lafipotzaes of which each
by itself satisfies detailed balance. The updates consist of a propgosal 7' followed by a
Metropolis accept/reject step.

3.1 Flips

If the perimeterP(%#) is larger than four we pick a random siteon the loop and form
y=X.1—X+X_1. If ye # the old configuration is kept, otherwise the proposal is to fafin
by replacingx; — y and to adjust the plaquette field accordingly

Ny (6) = Ny g (%) + 1. (3.3)
Such a proposal is accepted with probabititin(1, ggip ) with

w8 p()
0B PO

This update changes the shape of the loop without altering its perimeteridplayed in fig[]L.

(3.4)

3.2 Shifts

A site x; and a directiorv orthogonal tofj; is chosen randomly. Two siteg,= x + [I and
y = X1+ U are constructed. A proposal is made in either of two cases

1. If neithery € # nory € #, it is proposed to extend the loop by two sites

W' ={x1,.. XY Xigt, - (3.5)
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Figure 1: Flip (upper part) and shift (lower part) updates. The pldigueld in the shaded area differs by
one unit with respect to the non-shaded areas.

together with the necessary change in the plaquette figlgtxi) — nyy (%) +1 . Inanalogy
to the flips we accept with
In\,yi (xi)+l(B) p(V/)
Oshift = N
In,,, ) (B)  P(#7)

2. If y=x_1 andy = x;,» the reverse move is proposed, ix¢.andx;,; are proposed to be
removed from the loop. The acceptance probability is agaml, gshif) -

(3.6)

Otherwise no move is made.

3.3 Non-local updates

With free boundary conditions the alternation of the two updates propaséat svould be
sufficient to guarantee ergodicity. On a torus however, there exidtilootions to the partition
function that are not yet sampled. This is fixed by another update:

A plaquettex, u,v # u is chosen randomly. The subsets of sites which belong to the two dimen-
sional plane througk spanned byl andV is denoted by . The proposal is to change the plaquette
field according td

forallxerl : Ny (X) — Ny (X) +1 (3.7)

and it is accepted with
q B Inw(x)-i-l(B)
plane L 7|nu\,(x)(ﬁ) .

The acceptance rate for this proposal is tiny unless the volume is small.

The last update that we have implemented is proposed whewéveplanar, or alternatively
whenever it has exactly 4 corners. The proposal is to shift the whatellp@ne unit in a direction
perpendicular to its plane. This update can be built up from the elementiéisyasid flips, but it
turns out to reduce autocorrelation times considerably if it is introducedeparate update step.

One iteration of our algorithm consists of order of volume many shift, flip dadgr-loop-
shift updates followed by one plane update. The costs are comparablestdha Metropolis
sweep in the standard formulation, i.e. O(volume).

(3.8)

1The inverse move is realized by swapping- v.
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4. Performance of thealgorithm

Abelian gauge theory is particularly well understood in three dimensionghEanodel with
Villain action, which is believed to lie in the same universality class, the existehaenass gap
mand confinement at every value @fhave been prover [lL5]. The continuum limit at fixeds
believed to describe free massive bosons. A recent numerical workivétkvilson action[[16]
showed that the mass gap is indeed well described by

mL= 5.23(11)2\/87123 exp[—0.2527B] . (4.1)

To test our algorithm we use ed. (4.1) to keep the physical volume corattamt ~ 6 while
increasing the resolutioh/a € {8,16,24,32 40}. As weight function we take an exponential
that depends on the loop perimepEt? | = exp(6(P[#'] — 2)), and tune the “loop tensiord to

an algorithmically close to optimal value. More precisely, the cost to estimlatd a L /4 Wilson
loop to a given precision is minimalized. We measure expectation values ohgetda Wilson
loops as well as of plaquette-plaquette correlators. The autocorrelation dimiea cost-indicator
(CPU-timex relative error squared divided by volume) of the average plaquettstrihg tension
and an effective mass from the plaquette-plaquette correlator at Bepdrad are monitored. The
same calculations are repeated with a standard Metropolis algorithm, in whiplothesals are to
change the gauge field on a lig¢ — €(@+2%)_|n this case the number of sweeps per measurement
as well as the size of the interval from whidp is drawn are kept at their optimal values. The
optimal number of sweeps per measurement is determined only on Hattlé and kept at the
same value (i.e. 15) for the others. The size of the interval is determineathriatice separately.
Expectation values obtained with both algorithms are consistent with eachaoithercomparison
of autocorrelation times and costs is shown in fig. 2.

5. Conclusions

We have extended the concept of worm algorithms to Abelian gauge thelosesad of a loop
gas we deal with a surface ensemble. The worm is replaced by an gf@resand a Wilson loop
plays the role analogous to the worm’s head and tail. All standard obsesvan be estimated in
this model. In first numerical tests in three dimensions no significant criticalirgodown could
be observed, but larger correlation lengths will be necessary to madfnitel statement. On the
presently available lattices also a standard Metropolis algorithm perforntiseblavell.

Abelian gauge theories with different actions, like the Villain model or Wegri&r model
can presumably be treated in the same way. Whether matter fields can beoratedpnto the
algorithm or whether an extension to non Abelian models is feasible remainsredséigated.
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Figure 2: A comparison of the new algorithm with a standard Metropotie. The left panel shows inte-
grated autocorrelation times of two observables in unitsvadeps or iterations. The right panel compares
the costs. The autocorrelation times of the effective messansistent with 0.5 for this set of lattices and
are not plotted.

[4] U. Wolff Nucl. PhysB810 (2009) 491-502Hr Xi v: 0808. 3934].
[5] U. Wolff Phys. RevD79 (2009) 105002fr Xi v: 0902. 3100].

[6] W.Janke, T. Neuhaus and A. M. J. Schakeicl. PhysB829 (2010) 573-599
[Br Xi v: 0910. 5237].

[7] 1. Vierhaus,Simulation ofp* Theory in the Strong Coupling Expansion beyond the IsingtLim
Diploma thesis, Humboldt Universitat zu Berlin, 2010, and
T. Korzec, 1. Vierhaus, U. Wolff, in preparation.

[8] U. Wolff Nucl. PhysB824 (2010) 254—272Hr Xi v: 0908. 0284].
[9] U. Wolff Nucl. PhysB832 (2010) 520-537dr Xi v: 1001. 2231]].
[10] U. Wolff Nucl. PhysB814 (2009) 549-572¢r Xi v: 0812. 0677).

[11] U. WengerPhys. RevD80 (2009) 071503fr Xi v: 0812. 3565).
[12] U. Wolff PoS(Lattice 2010)02Q (2010) far Xi v: 1009. 0657].
[13] T. Sterling and J. Greensitéucl. PhysB220 (1983) 327.

[14] V. Azcoiti, E. Follana, A. Vaquero and G. Di Carl{EP 08 (2009) 008 far Xi v: 0905. 0639)].

[15] M. Gopfert and G. MaclCommun. Math. Phy82 (1981) 545.

[16] M. Loan, M. Brunner, C. Sloggett and C. Haniys. RevD68 (2003) 034504
[Br Xi v: hep-1at/0209159].



http://arXiv.org/abs/0808.3934
http://arXiv.org/abs/0902.3100
http://arXiv.org/abs/0910.5231
http://arXiv.org/abs/0908.0284
http://arXiv.org/abs/1001.2231
http://arXiv.org/abs/0812.0677
http://arXiv.org/abs/0812.3565
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(Lattice 2010)020
http://arXiv.org/abs/1009.0657
http://arXiv.org/abs/0905.0639
http://arXiv.org/abs/hep-lat/0209159

