
P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

GPU-Based Conjugate Gradient Solver for Lattice
QCD with Domain-Wall Fermions

Ting-Wai Chiu1,2, Tung-Han Hsieh3, Yao-Yuan Mao∗,1, Kenji Ogawa1 (for the TWQCD
Collaboration)
1 Department of Physics, and Center for Theoretical Sciences, National Taiwan University,
Taipei 10617, Taiwan
2 Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617,
Taiwan
3 Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan

We present a GPU-based conjugate gradient (CG) solver for lattice QCD with domain-wall
fermions (DWF). It is well-known that CG is the most time-consuming part in the Hybrid Monte
Carlo simulation of unquenched lattice QCD, which becomes even more computational demand-
ing for lattice QCD with exact chiral symmetry. We have implemented the CG for the general
5-dimensional DWF operator on NVIDIA R© CUDATM architecture with mixed-precision, using
the defect correction as well as the reliable updates algorithms. We optimize our computation by
even-odd preconditioning and several innovative techniques for our CUDA kernels. For NVIDIA
GeForce R© GTX 285/480, our CG solver attains 180/233 Gflops (sustained).

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

CG for DWF on GPU Yao-Yuan Mao

1. Introduction

Simulation of unquenched lattice QCD with exact chiral symmetry is a grand challenge among
all sciences. Even for a modest 163× 32 lattice with lattice spacing a ∼ 0.1 fm, it often requires
a supercomputer with peak computing power more than 50 Teraflops (e.g., 10 racks of IBM Blue-
Gene/L). Therefore, only 2-3 lattice QCD groups around the world could afford to perform the
simulation of unquenched lattice QCD with the domain-wall fermion [1], or the overlap-Dirac
fermion [2]. However, this scenario has been undergoing a dramatic change during the last 12
months. With the emergence of low-cost and computationally powerful Graphic Processing Unit
(GPU), now plugging a graphic card with NVIDIA GTX 285 (240 cores, one Teraflops peak) into
a PC immediately turns the system into a powerful device, attaining a sustained 180 Gflops for the
conjugate gradient (CG) with mixed precision.

Since 2009, the Taiwan Lattice QCD Collaboration (TWQCD) has been using a GPU clus-
ter (currently constituting of 250 NVIDIA GPUs with 40 Teraflops (sustained)) to simulate un-
quenched lattice QCD with optimal domain-wall quarks [3, 4]. We have met the challenge of pre-
serving the chiral symmetry to a high precision and sampling all topological sectors ergodically.
For our recent physical results on the 2-flavors QCD, we refer the readers to [5] and [6].

In this paper, we present our design of the CG solver for the general 5-dimensional DWF
operator on NVIDIA CUDA architecture with mixed-precision, using the defect correction as well
as the reliable updates algorithms. Our CG solver is optimized with even-odd preconditioning
on the 4-dimensional space-time lattice, plus several innovative tuning techniques for the CUDA
kernels. For NVIDIA GeForce GTX 285/480, our CG solver achieves 180/233 Gflops (sustained).

2. Conjugate Gradient Solver for Domain-Wall Fermions

2.1 Optimal Domain-Wall Fermions

For a given Ns (the number of sites in the fifth dimension), the mathematically maximal chiral
symmetry can be attained by the optimal domain-wall fermion (ODWF) [3] with the operator

[D(mq)]xx′;ss′ = (ωsDw +1)xx′δss′+(σsDw−1)xx′Lss′ , (σs = ωs) (2.1)

Here Dw is the standard Wilson Dirac Operator plus a negative parameter −m0 (0 < m0 < 2),

(Dw)xx′ =−
1
2 ∑

µ

[
(1− γµ)Uµ(x)δx+µ̂,x′+(1+ γµ)U†

µ(x
′)δx−µ̂,x′

]
+(d−m0), (2.2)

where Uµ(x) denotes the link varaible, d is the dimension of the space-time (d = 4 for QCD),

L = P+L++P−L−, P± = (1± γ5)/2, (2.3)

and

(L+)ss′ =

{
δs−1,s′ , 1 < s≤ Ns

−(mq/2m0)δNs,s′ , s = 1
, L− = (L+)

†. (2.4)

The weights {ωs} along the fifth dimension are fixed according to the formula derived in [3] such
that the mathematically maximal chiral symmetry is attained. In general, for other DWF with
non-maximal chiral symmetry, the weights {σs} and {ωs} have different values, e.g., for the con-
ventional (Shamir) DWF, σs = 0,ωs = 1,∀s, and for the Borici DWF [7], σs = ωs = 1,∀s.

2

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

CG for DWF on GPU Yao-Yuan Mao

2.2 Even-Odd Preconditioning

Since Dw commutes with (ω)ss′ ≡ ωsδss′ and (σ)ss′ = σsδss′ , one can re-order the terms in
Eq. (2.1) as

D(mq) = Dw(ω +σL)+(1−L). (2.5)

Separating the even and the odd sites on the 4D space-time lattice, Eq. (2.5) can be written as

D(mq) =

(
d−m0 DEO

w

DOE
w d−m0

)
(ω +σL)+(1−L) =

(
X DEO

w Y
DOE

w Y X

)
, (2.6)

where
X ≡ (d−m0)ω(1+ cL)+(1−L), Y ≡ ω(1+ cL), (c)ss′ ≡ (σs/ωs)δss′ . (2.7)

Now we further rewrite it in a more symmetric form by defining

M5 ≡
√

ω
−1Y X−1√

ω =
[
(d−m0)+

√
ω
−1
(1−L)(1+ cL)−1√

ω
−1
]−1

, (2.8)

and
S1 ≡

√
ω
−1Y X−1 = M5

√
ω
−1
, S2 ≡ Y−1√w. (2.9)

then Eq. (2.6) becomes

D(mq) = S−1
1

(
1 M5DEO

w

M5DOE
w 1

)
S−1

2 = S−1
1

(
1 0

M5DOE
w 1

)(
1 0
0 C

)(
1 M5DEO

w

0 1

)
S−1

2 , (2.10)

where the Schur decomposition has been used in the last equality, with the complement

C ≡ 1−M5DOE
w M5DEO

w . (2.11)

Obviously, the most time-consuming task in the HMC is to solve the linear system CC†|x〉 = |b〉
by the conjugate gradient (CG), namely, in the computation of the fermion force in the molecular
dynamics. In this work, we implement the entire conjugate gradient inside the NVIDIA GPU,
which can be used for the HMC as well as for computing the valence quark propagators.

2.3 Algorithm

Conjugate Gradient (CG) method [8] is a widely-used numerical algorithm for iteratively solv-
ing a linear system Ax = b to a certain precision ε , where A is a positive-definite Hermitian matrix.
With the CG algorithm (see Algorithm 1), the problem is turned into a task dominated by the
matrix-vector multiplication. In this work, we utilize CUDA to implement the 5D domain-wall
fermion operator (2.10) matrix-vector multiplications of the CG on NVIDIA GPUs. For the GPU,
the single-precision operations are several times faster than the double-precision ones, thus it is ad-
vantageous to use the mixed-precision CG. In the so-called defect correction algorithm, one solves
x in the low-precision, and updates the solution x̂ and the residue r̂ in the high-precision. (see
Algorithm 2, where the hatted symbols represent variables in the high-precision). In this fashion,
most of the floating-point operations are in the low-precision, thus it is advantageous for the GPU.
Theoretically, the defect correction algorithm is mathematically sound, and it always works in prac-

3

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

CG for DWF on GPU Yao-Yuan Mao

Algorithm 1 Conjugate Gradient
x0 := initial guess
r0 := b−Ax0

p0 := r0

k := 0
while |rk|> ε|b| do

αk := (rk,rk)/(pk,Apk)

rk+1 := rk−αkApk

βk+1 := (rk+1,rk+1)/(rk,rk)

xk+1 := xk +αk pk

pk+1 := rk+1 +βk+1 pk

k := k+1
end while

Algorithm 2 Mixed-Precision Conjugate Gradient (Defect Correction)
x̂ := initial guess
r̂ := b̂− Âx̂
while |r̂k|> ε̂|b̂| do

r := r̂
p := r̂
x := 0
Use Algorithm 1 to solve x = A−1r in the low-precision to a precision ε

x̂ := x̂+ x
r̂ := b̂− Âx̂

end while

tice. However, the seemingly drawback is that one has to build up the Krylov space every time it
restarts the CG in the low precision. On the other hand, if one does not reset the low-precision p
vector inside the while loop of Algorithm 2 (i.e., skipping the step (p := r̂) except at the first time),
the “warm-up" time in re-building the Krylov space could be reduced. This so-called reliable up-
dates algorithm [9, 10] would run faster than the defect correction. Although the reliable updates
in this fashion may not converge for all cases theoretically due to the non-orthogonality of p and r,
in practice it still works for most cases. We have implemented both algorithms in our CG solver,
and it automatically switches to the defect correction if the reliable updates does not converge in
the first place.

3. CUDA Kernels and Optimization

The CUDA architecture developed by NVIDIA enables us to do parallel computations on
NVIDIA’s GPUs. (For more detailed programming models and strategies, see “CUDA Program-
ming Guide for CUDA Toolkit” [11].)

In CUDA, a thread is the smallest unit to execute a kernel, and a certain number of threads
form a block. Each thread will be assigned a 3-dimensional index, and each block a 2-dimensional

4

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

CG for DWF on GPU Yao-Yuan Mao

index. Inside a block, a warp of threads will execute the kernel concurrently. Each thread has its
own register memory, and threads in the same block share a shared memory. The space of register
and shared memory is very limited, but they have the fastest access speed. The global memory on
the device can be accessed by any thread, but it has the slowest bandwidth.

To implement the mixed-precision CG for ODWF with CUDA, we perform all matrix-vector
multiplication, vector reduction (inner product), and vector addition/subtraction on the GPU (de-
vice), while the CPU (host) is used to do the flow control, memory assignment, and device control.

The CUDA kernels in our CG solver can be divided into five different catalogs. We will discuss
each catalog and their optimization in the following subsections.

3.1 Vector Index Conversion

These kernels are used to change the indexing schemes between the device (GPU) and the
host (CPU). To store the Dirac spinors in an one-dimensional array, we need to map the multi-
dimensional indices to the 1D array index. One needs 4× 3× 2 = 24 real numbers to store one
Dirac spinor on one site of the 5D lattice. On the CPU, this color-spinor index c which runs from
0 to 23 is the inner-most (fastest-running) index, which is followed by the fifth-dimension index
s, and then x,y,z, t indices, where t is the outer-most (slowest-running) index. If ihost denotes the
one-dimensional array index of the CPU scheme, then we have

ihost = c+ s×24+ x×24Ns + · · ·+ t×24NxNyNzNs. (3.1)

However, for computation on the GPU, we assign each thread a five-dimensional site index. This
implies that adjacent threads have consecutive s indices. Thus we want to arrange the data such
that optimal coalescence is attained when loading the vector from device global memory to the
register and/or the shared memory of the threads. Since the GPU provides vector data types such
as float4 and double2 which allow us to move 4 float numbers (or 2 double numbers) at one
time, a simple way to map to the one-dimensional array index on GPU (for single precision) is

idev = c mod 4+ s×4+[c/4]×4Ns + x×24Ns + · · ·+ t×24NxNyNzNs, (3.2)

and similarly for the double precision. So every time when we transfer data between the host and
the device, we convert the index accordingly.

3.2 Matrix-Vector Multiplication for DOE
w (DEO

w)

DOE
w (DEO

w) is the usual Dw without mass term,[
DOE

w (DEO
w)
]

xx′ =−
1
2 ∑

µ

[
(1− γµ)Uµ(x)δx+aµ̂,x′+(1+ γµ)U†

µ(x
′)δx−aµ̂,x′

]
. (3.3)

From this expression we see that the multiplication of DOE
w (DEO

w) with a vector involves the link
variables Uµ(x) and γ-matrices. We have used the following tricks for optimization.

Firstly, since the γ-matrices in Eq. (3.3) are in the combination (1± γµ), the left-handed and
the right-handed Dirac components are related to each other. Also, since the link variables do not
have Dirac indices, we can just multiply Uµ(x) to the left-handed components, and then restore the
right-handed components.

5

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

CG for DWF on GPU Yao-Yuan Mao

Secondly, Uµ(x) has no fifth-dimension dependence, so threads having the same x but different
s can share the same Uµ(x). So we put the link variables in the shared memory.

Thirdly, because GPU computation is memory bandwidth bound, one must try to reuse the
data. For example, the hopping term (δx−aµ̂,x′) in Dw, all neighboring sites of x are involved in
the calculation. If we assign each x to one thread, then there must be overlapping data loading for
neighboring sites. To reduce this overlapping data transfer, we distribute each (x,y,z) to one thread,
with a loop in the t-direction. Then the neighboring data in the t-direction can be reused, and the
efficiency is enhanced.

Besides above tuning techniques, we also expand small loops, and to use the texture memory
for caching data, Here texture is used for loading the vectors and link variables. We use Python
[12] to expand small loops, and to generate the set of (Dw multiplication) kernels.

3.3 Matrix-Vector Multiplication for M5

The matrix M5 is given by Eq. (2.8). One can see that M5 is block diagonal in the chiral basis
and it does not depend on the space-time nor the color indices. In fact, it can be divided into two
constant matrices in the fifth dimension, i.e., the left-handed and the right-handed ones. So the
multiplication of M5 with a vector can be regarded as us = ∑s′(M5)ss′vs′ . Here we use the shared
memory to store the source vector (v). Since M5 only takes 2N2

s real numbers, we can put M5 into
the register of each thread (with different s and x,y,z). Again, a loop in t is inserted to reuse the M5

data in the register. Also, we use Python to generate these kernels.

3.4 Vector Reduction

To calculate the norm of a vector, we use the well-known parallel reduction with the shared
memory. However, due to the limitation on the number of threads per block, it is inevitable to
use global memory when the size of a vector becomes very large. Our solution is to perform the
block reduction in prior kernels, i.e., to sum up vector elements (already stored in registers/shared
memory) within each block. Then these partial sums can be added with a parallel reduction.

3.5 Vector Addition and Subtraction

We can combine the simple addition/subtraction with other kernels in which one vector has
been loaded. For example, to multiply C ≡ 1−M5DOE

w M5DEO
w to a vector, we can combine the last

subtraction with the last M5 multiplication.

4. Performance

We present some benchmarks of our CG solver, using NVIDIA GeForce GTX 285, GeForce
GTX 480, TeslaTM C1060, and Tesla C2050. Note that our code has not yet been well-tuned for the
Fermi architecture (GTX 480 and C2050). From Table 1, we see that the bottleneck of our program
is in the single-precision Dw matrix-vector multiplication. Due to the mixed-precision CG, the time
used in the double-precision operations are almost negligible. For the Fermi architecture, due to
the larger L1 cache, there is a significant improvement in the single-precision Dw matrix-vector
multiplication, and also in the double-precision M5 matrix-vector multiplication.

6

P
o
S
(
L
a
t
t
i
c
e

2
0
1
0
)
0
3
0

CG for DWF on GPU Yao-Yuan Mao

Table 1: Benchmark of our CG solver for DWF on a 163×32×16 lattice, numbers in units of Gflops)

Dw (single) M5 (single) Dw (double) M5 (double) CG (mixed)

GTX 285 177 346 33 69 181
GTX 480 248 331 32 116 233
C1060 128 290 29 61 132
C2050 160 239 22 100 156

5. Summary

We have implemented an efficient GPU-based CG solver for generalized domain-wall fermions.
Our CUDA kernels are tuned with several innovative schemes. On NVIDIA GeForce GTX 285/480,
our CG solver achieves 180/233 Gflops (sustained). This efficient CG solver constitutes the most
crucial part in TWQCD’s HMC code for simulation of unquenched lattice QCD with the optimal
domain-wall fermion.

Acknowledgments

This work is supported in part by the National Science Council (Nos. NSC96-2112-M-002-
020-MY3, NSC99-2112-M-002-012-MY3, NSC96-2112-M-001-017-MY3, NSC99-2112-M-001-
014-MY3, NSC99-2119-M-002-001) and NTU-CQSE (Nos. 99R80869, 99R80873).

References

[1] D. B. Kaplan, Phys. Lett. B 288, 342 (1992)

[2] H. Neuberger, Phys. Lett. B 417, 141 (1998); R. Narayanan and H. Neuberger, Nucl. Phys. B 443, 305
(1995)

[3] T. W. Chiu, Phys. Rev. Lett. 90, 071601 (2003); Nucl. Phys. Proc. Suppl. 129, 135 (2004)

[4] T. W. Chiu et al. [TWQCD Collaboration], PoS LAT2009, 034 (2009) [arXiv:0911.5029 [hep-lat]].

[5] T. W. Chiu et al. [TWQCD Collaboration], PoS LAT2010, 099 (2010)

[6] T. H. Hsieh et al. [TWQCD Collaboration], PoS LAT2010, 085 (2010)

[7] A. Borici, Nucl. Phys. Proc. Suppl. 83, 771 (2000) [arXiv:hep-lat/9909057].

[8] M. R. Hestenes and E. Stiefel, Journal of Research of the National Bureau of Standards 49, 6 (1952).

[9] G. L. G. Sleijpen, and H. A. van der Vorst, Computing 56, 141-164 (1996).

[10] M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. Commun. 181, 1517
(2010) [arXiv:0911.3191 [hep-lat]].

[11] http://developer.nvidia.com/object/gpucomputing.html

[12] http://www.python.org

7

http://developer.nvidia.com/object/gpucomputing.html
http://www.python.org

