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1. Introduction

By recent algorithmic and computational developments the lattice QCD simulations around
the physical point became possible. Especially, the Rational Hybrid Monte Carlo (RHMC) algo-
rithm [1, 2] and the domain-decomposed HMC (DDHMC) algorithm [3] led to remarkable cost
reduction.

The RHMC algorithm, which is an exact algorithm for any numbers of dynamical fermions,
has been used widely over several years. It was originally proposed for rooted karnel since R
algorithm is inexact and PHMC needs extra calculation to correct metropolis check. RHMC is
also useful for simulations with non-rooted karnel, e.g. 2 flavors of Wilson fermions. It archives

h root trick and

good algorithmic performance by combining some acceleration methods, the n
relaxation of solver’s tolerance for each fraction, or separating fractions to large force and small
force part and putting them at different time scale [2]. It is also good point that programing is easy.
Once remez algorithm to calculate coefficients for rational approximation and multi-shift solver is
implemented, one does not need non-trivial programing.

The DDHMC algorithm makes a geometric separation of fermionic determinant into determi-
nant for small blocks and Schur complement. In DDHMC, inverse matrix of the Wilson Dirac oper-
ator is solved effectively by using Schwarz alternating procedure. In Schwarz alternating procedure
preconditioning, it is possible to use single precision acceleration. In order to suppress forces and
minimize communication overhead, the gauge links connecting domains and their staple links are
fixed ("dead/alive link method") during molecular dynamics (MD) step was also proposed. When
dead/alive link method is employed, to make sure that all gauge links are updated with (almost)
same rate, a method such like parallel translation at every trajectory is necessary. For high perfor-
mance computing, multi nodes/cores architecture is absolutely imperative. Here communication
would be a bottleneck. DDHMC is reasonable choice in the sight of this because its communi-
cation overhead is less than the others. It is possible to get better performance out of them by
domain-decomposition on multiple cores architectures such as Cell Cell/B.E. and GPGPU [7, 8].

In this proceeding we describe new algorithm combined RHMC and DDHMC and report test
results for feasibility and efficiency on small lattices.

2. RDDHMC Algorithm

Rational domain-decomposed HMC algorithm is of extension from DDHMC. First we per-
form a domain decomposition of the Wilson Dirac operator and even odd preconditioning.
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where D=1 —DE%DEODEéDOE and detD = det(1 — D,yDye) pr det(1 — D,yDye) 0o Note we write
e/o as even or odd site and E/O as even or odd domain. By using 5 Hermiticity and Eq. (2.1), detD
for degenerate quark masses is expressed as



RDDHMC Yoshifumi Nakamura

n

(detD)" = det(D'D) ¥ det(D'D) ¥, (2.2)

where ny is number of flavours. Even when n is even, one could calculate the determinant by
using the rational approximation like following,

mmwﬂw()%mwmm&h
i (2.3)
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where X is D'D or D'D. The partition function for n r=2is

1 P L .
Z= / DU[det(D' D)7 )t [det(D'D) ]2 ™5 , (2.4)
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As usual cost reduction methods, multi timescales [4], OMF [5, 6] integrator and relaxing
solver’s tolerance with keeping reversibility during MD steps are applicable. The single precision

acceleration can be used for multiplication of D, It, however, is difficult to use chronological

FF /00
guess as an initial guess for solver since high precision is required for restarting multi-shift solver

when there are many shifts [9].

2.1 Dead/Alive links

"Dead/Alive link method" and a translation method are introduced by Liischer. Communica-
tion overhead could be minimized by this method. Generally one could make any links non-active
during MD steps. We consider 3 types for "Dead/Alive link method" as following.

Active link method:  All links are alive during MD.
Level 1 non-active link method: Links connecting other domain are dead.
Level 2 non-active link method:  Staples around Level 1 non-active link are also dead.

When two or more domains are put in a node, like reft figue of Fig. (1), communication is needed
only for multiplication of Dog and D¢ in D. But, when forces for gauge action and clover term
are calculated in case of level 1 non-active link method, data transfer is necessary since derivative
of plaquette term of gauge action and clover term at domain surface depend on link variables which
are in other domains and change during MD steps. In case of level 2 non-active link method, one
does not need data transfer for rectangular term, 1 level smeared hopping term, e.g. SLiNC fermion
action, besides plaquette term and clover term. For smeared clover term and more smeared hopping
term, further non-active level is required to avoid communication.
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Figure 1: (left) Domain decomposition in the case of 4 x 4 x 4 x 4 block size. Light blue links denote non-
active link, level 1 non-active link method. Red and blue points and wight and gray domain are even-odd
sites and even/odd domains, respectively. (right) Level 2 non-active link method, additionally links around
blue links of left figure are non-active

2.2 Tuning rational fraction part

Usually to avoid generating coefficients for the rational approximation every time we imple-
ment/calculate specific sets of coefficients in advance. If approximation range of generated coef-
ficients is wider that the condition number of X, one can use them by shifting as following, when
range does not cover actual [min, max] of X.

X% =B (BX)°

—a Ci (26)
[Co + ; BX 1 di]

where 3 is inverse of the minimum eigenvalue of X and ¢;,d; is generated by remez algorithm with

range for one to the condition number of X, [1,C(X)]. When the condition number is big and an

accurate approximation is required, CPU time to generate new coefficients a number of times is

unignorable except for parallelizing the remaz algorithm.

Fig. (2) is an example at some trajectory for relation between the number of averaged iteration
and maximum force over MD step for each partial fraction of (ﬁ%f))*l/ 4 in case that approximation
range is set as [min/\/i V2 max], block size is 4 X 6 x 6 x 4 and non-active link level is 1. When a
multi-timescale integrator is used, the term that force is small (big) and numerical cost is expensive
(cheap) are generally put at coarser (finer) timescale. While it is possible to put partial fractions
at different timescales, it, however, is easier to reduce cost that relaxing tolerances of a few first
fractions since their forces are small and all forces are summed up.

3. Numerical tests

We perform numerical tests with the standard Wilson action at 8 = 5.00 and 2 flavours of stan-
dard Wilson fermions for & = 0.100 to 0.17 (cf. k. = 0.187(1)) on 8* lattices. To check algorithm



RDDHMC Yoshifumi Nakamura

500————F——— T
e |F[*1000 1
4001 iteration |
300 -
200+ -
100+ -
% 2 8 10

4 6
-th partial fraction

Figure 2: The number of iteration and maximum force for each partial fraction of (D*D)~1/* on 243 x 32
lattice for the standard Wilson gauge action at § = 5.60 and k = 0.1575 for ny = 2 standard Wilson fermions.

correctness we compare results with HMC, which is accelerated by even-odd preconditioning,
chronological inverter and multi timescale Omelyan integrator.

For RDDHMC, chronological inverter is not used since multi-shift solver with the double
precision does not work when there are many shifts, although multi timescale Omelyan integrator
is used. The block size of domain is 4 x 4 x 4 x 4 and both active and level 1 non-active link method
are tested. Level 2 non-active link method is not tested because 90% of links become non-active
in case of such small domain size. For rational approximation Eq. (2.4), j; = j» = 2 and degree
of approximation is 20 and 25 for force and action calculation, respectively. To solve multi-shifted
system, multi-shift CG is used and GMRES is used to solve Dgé and Da}).

Fig. (3) shows plaquette values and e " for each K for different algorithms. Statistics is
0(2000) and first 1000 trajectories are discarded for thermalisation. The plaquette values are con-
sistent and e~ is 1 within error. In fig. (4) we plot gauge force and fermionic force as a function
of k. The forces become large as increasing k. Fermionic force of HMC is separated to two
parts, which are of DD and DD by changing to RDDHMC algorithm. When non-active link
method is used, forces of gauge action and ¢ (D'D)~1¢ are suppressed. On the other hand, force
of 7(D'D)~'¢ is not suppressed because D both for active and level 1 non-active link method are
same.

In this test, numerical cost for RDDHMC is much more expensive than HMC (see Fig (5)).
~1

‘ EE/00? ‘
to solve (D'D + o;)x; = b; at RDDHMC. Because the condition number of D"D is as large as one

of D'D, multiplication of DEI;/OO
most of the time is spent for this. Therefore optimization for multiplication of Dgg /oo and cost
—1

EE/O0

The multiplication of DD, which includes four D with the double precision is performed
is calculated many times inside of multi-shift solver. In fact,

reduction at computing multiplication of D for example by deflation, are important.
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Figure 3: The plaquette values(left) and e ¥ (right) at B = 5.00 on 8® for ordinal even-odd preconditioned
HMC, RDDHMC(active) RDDHMC (level 1 non-active link method) algorithm.
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Figure 4: Norm of gauge force (left) and fermionic force (right) with same algorithmic parameters as
Fig. (3).

4. Summary

We have been described RDDHMC algorithm and tested it on small lattices. The values for
plaquette are consistent with standard HMC and e ¥ is equal to 1 within error. So RDDHMC
algorithm seems to be correct. Unfortunately, we could not see any gain in this test. One reason
is that inversion for D¥D, which is needed for both action and force calculations is expensive since
DD contains Dgé 100" Besides this, force of ¢"(D'D)~!¢ is small even in case of level 1 non-
active link method. On large lattices we expect better situation since force of ¢"(D'D)~'¢ is

suppressed further by level 2 non-active link method with bigger block size.
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Figure 5: The cost for HMC and RDDHMC (level 1 non-active link method) at 8 = 5.00 on 85.
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