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Rational Domain-De
omposed HMC
Yoshifumi Nakamura�Institut für Theoretis
he Physik, Universität Regensburg, 93040 Regensburg, GermanyE-mail: yoshifumi.nakamura�physik.uni-regensburg.deWe study new HMC algorithm 
ombined the domain-de
omposed HMC algorithm and the ratio-nal HMC algorithm. We perform numeri
al tests with the standard Wilson gauge a
tion and 2�avours of the standard Wilson fermions and 
ompare with HMC algorith of even-odd pre
ondi-tioning with 
hronologi
al inverter. We 
ould not �nd gain with Rational Domain-De
omposedHMC on 84 latti
es.
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RDDHMC Yoshifumi Nakamura1. Introdu
tionBy re
ent algorithmi
 and 
omputational developments the latti
e QCD simulations aroundthe physi
al point be
ame possible. Espe
ially, the Rational Hybrid Monte Carlo (RHMC) algo-rithm [1, 2℄ and the domain-de
omposed HMC (DDHMC) algorithm [3℄ led to remarkable 
ostredu
tion.The RHMC algorithm, whi
h is an exa
t algorithm for any numbers of dynami
al fermions,has been used widely over several years. It was originally proposed for rooted karnel sin
e Ralgorithm is inexa
t and PHMC needs extra 
al
ulation to 
orre
t metropolis 
he
k. RHMC isalso useful for simulations with non-rooted karnel, e.g. 2 �avors of Wilson fermions. It ar
hivesgood algorithmi
 performan
e by 
ombining some a

eleration methods, the nth root tri
k andrelaxation of solver's toleran
e for ea
h fra
tion, or separating fra
tions to large for
e and smallfor
e part and putting them at different time s
ale [2℄. It is also good point that programing is easy.On
e remez algorithm to 
al
ulate 
oef�
ients for rational approximation and multi-shift solver isimplemented, one does not need non-trivial programing.The DDHMC algorithm makes a geometri
 separation of fermioni
 determinant into determi-nant for small blo
ks and S
hur 
omplement. In DDHMC, inverse matrix of the Wilson Dira
 oper-ator is solved effe
tively by using S
hwarz alternating pro
edure. In S
hwarz alternating pro
edurepre
onditioning, it is possible to use single pre
ision a

eleration. In order to suppress for
es andminimize 
ommuni
ation overhead, the gauge links 
onne
ting domains and their staple links are�xed ("dead/alive link method") during mole
ular dynami
s (MD) step was also proposed. Whendead/alive link method is employed, to make sure that all gauge links are updated with (almost)same rate, a method su
h like parallel translation at every traje
tory is ne
essary. For high perfor-man
e 
omputing, multi nodes/
ores ar
hite
ture is absolutely imperative. Here 
ommuni
ationwould be a bottlene
k. DDHMC is reasonable 
hoi
e in the sight of this be
ause its 
ommuni-
ation overhead is less than the others. It is possible to get better performan
e out of them bydomain-de
omposition on multiple 
ores ar
hite
tures su
h as Cell Cell/B.E. and GPGPU [7, 8℄.In this pro
eeding we des
ribe new algorithm 
ombined RHMC and DDHMC and report testresults for feasibility and ef�
ien
y on small latti
es.2. RDDHMC AlgorithmRational domain-de
omposed HMC algorithm is of extension from DDHMC. First we per-form a domain de
omposition of the Wilson Dira
 operator and even odd pre
onditioning.detD= det DEE DEODOE DOO!=det DEE DEOD�1OO0 1 !det �DEE 00 1!det 1 0DOE DOO! ;=det(1�DeoDoe)EE det �DEE det(1�DeoDoe)OO ;=det �Ddet �D ; (2.1)where �D= 1�D�1EEDEOD�1OODOE and det �D= det(1�DeoDoe)EE det(1�DeoDoe)OO. Note we writee/o as even or odd site and E/O as even or odd domain. By using g5 Hermiti
ity and Eq. (2.1), detDfor degenerate quark masses is expressed as 2
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(detD)n f = det( �D� �D) n f2 det( �D� �D) n f2 ; (2.2)where n f is number of �avours. Even when n f is even, one 
ould 
al
ulate the determinant byusing the rational approximation like following,(detD)n f = [det( �D� �D) n f2 j1 ℄ j1 [det( �D� �D) n f2 j2 ℄ j2 ;X n f2 j � a0+åi=1 aiX+bi ; (2.3)where X is �D� �D or �D� �D. The partition fun
tion for n f = 2 isZ = Z DU [det( �D� �D) 1j1 ℄ j1 [det( �D� �D) 1j2 ℄ j2e�Sg ; (2.4)for n f = 2+1 Z = Z DU [det( �Dl� �Dl) 1j1 ℄ j1 [det( �Dl� �Dl) 1j2 ℄ j2 �[det( �Ds� �Ds) 12k1 ℄k1 [det( �Ds� �Ds) 12k2 ℄k2e�Sg : (2.5)As usual 
ost redu
tion methods, multi times
ales [4℄, OMF [5, 6℄ integrator and relaxingsolver's toleran
e with keeping reversibility during MD steps are appli
able. The single pre
isiona

eleration 
an be used for multipli
ation of D�1EE=OO. It, however, is dif�
ult to use 
hronologi
alguess as an initial guess for solver sin
e high pre
ision is required for restarting multi-shift solverwhen there are many shifts [9℄.2.1 Dead/Alive links"Dead/Alive link method" and a translation method are introdu
ed by Lüs
her. Communi
a-tion overhead 
ould be minimized by this method. Generally one 
ould make any links non-a
tiveduring MD steps. We 
onsider 3 types for "Dead/Alive link method" as following.A
tive link method: All links are alive during MD.Level 1 non-a
tive link method: Links 
onne
ting other domain are dead.Level 2 non-a
tive link method: Staples around Level 1 non-a
tive link are also dead.When two or more domains are put in a node, like reft �gue of Fig. (1), 
ommuni
ation is neededonly for multipli
ation of DOE and DEO in �D. But, when for
es for gauge a
tion and 
lover termare 
al
ulated in 
ase of level 1 non-a
tive link method, data transfer is ne
essary sin
e derivativeof plaquette term of gauge a
tion and 
lover term at domain surfa
e depend on link variables whi
hare in other domains and 
hange during MD steps. In 
ase of level 2 non-a
tive link method, onedoes not need data transfer for re
tangular term, 1 level smeared hopping term, e.g. SLiNC fermiona
tion, besides plaquette term and 
lover term. For smeared 
lover term and more smeared hoppingterm, further non-a
tive level is required to avoid 
ommuni
ation.3
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Figure 1: (left) Domain de
omposition in the 
ase of 4�4�4�4 blo
k size. Light blue links denote non-a
tive link, level 1 non-a
tive link method. Red and blue points and wight and gray domain are even-oddsites and even/odd domains, respe
tively. (right) Level 2 non-a
tive link method, additionally links aroundblue links of left �gure are non-a
tive .2.2 Tuning rational fra
tion partUsually to avoid generating 
oef�
ients for the rational approximation every time we imple-ment/
al
ulate spe
i�
 sets of 
oef�
ients in advan
e. If approximation range of generated 
oef-�
ients is wider that the 
ondition number of X , one 
an use them by shifting as following, whenrange does not 
over a
tual [min, max℄ of X .Xa = b�a(bX)a� b�a�
0+åi=1 
ibX+di � (2.6)where b is inverse of the minimum eigenvalue of X and 
i;di is generated by remez algorithm withrange for one to the 
ondition number of X , [1;C(X)℄. When the 
ondition number is big and ana

urate approximation is required, CPU time to generate new 
oef�
ients a number of times isunignorable ex
ept for parallelizing the remaz algorithm.Fig. (2) is an example at some traje
tory for relation between the number of averaged iterationand maximum for
e over MD step for ea
h partial fra
tion of ( �D� �D)�1=4 in 
ase that approximationrange is set as [min/p2 ,p2 max℄, blo
k size is 4�6�6�4 and non-a
tive link level is 1. When amulti-times
ale integrator is used, the term that for
e is small (big) and numeri
al 
ost is expensive(
heap) are generally put at 
oarser (�ner) times
ale. While it is possible to put partial fra
tionsat different times
ales, it, however, is easier to redu
e 
ost that relaxing toleran
es of a few �rstfra
tions sin
e their for
es are small and all for
es are summed up.3. Numeri
al testsWe perform numeri
al tests with the standard Wilson a
tion at b = 5:00 and 2 �avours of stan-dard Wilson fermions for k = 0:100 to 0:17 (
f. k
 = 0:187(1)) on 84 latti
es. To 
he
k algorithm4
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Figure 2: The number of iteration and maximum for
e for ea
h partial fra
tion of ( �D� �D)�1=4 on 243� 32latti
e for the standardWilson gauge a
tion at b = 5:60 and k = 0:1575 for n f = 2 standardWilson fermions.
orre
tness we 
ompare results with HMC, whi
h is a

elerated by even-odd pre
onditioning,
hronologi
al inverter and multi times
ale Omelyan integrator.For RDDHMC, 
hronologi
al inverter is not used sin
e multi-shift solver with the doublepre
ision does not work when there are many shifts, although multi times
ale Omelyan integratoris used. The blo
k size of domain is 4�4�4�4 and both a
tive and level 1 non-a
tive link methodare tested. Level 2 non-a
tive link method is not tested be
ause 90% of links be
ome non-a
tivein 
ase of su
h small domain size. For rational approximation Eq. (2.4), j1 = j2 = 2 and degreeof approximation is 20 and 25 for for
e and a
tion 
al
ulation, respe
tively. To solve multi-shiftedsystem, multi-shift CG is used and GMRES is used to solve D�1EE and D�1OO.Fig. (3) shows plaquette values and e�DH for ea
h k for different algorithms. Statisti
s isO(2000) and �rst 1000 traje
tories are dis
arded for thermalisation. The plaquette values are 
on-sistent and e�DH is 1 within error. In �g. (4) we plot gauge for
e and fermioni
 for
e as a fun
tionof k . The for
es be
ome large as in
reasing k . Fermioni
 for
e of HMC is separated to twoparts, whi
h are of �D� �D and �D� �D by 
hanging to RDDHMC algorithm. When non-a
tive linkmethod is used, for
es of gauge a
tion and f �( �D� �D)�1f are suppressed. On the other hand, for
eof f �( �D� �D)�1f is not suppressed be
ause �D both for a
tive and level 1 non-a
tive link method aresame.In this test, numeri
al 
ost for RDDHMC is mu
h more expensive than HMC (see Fig (5)).The multipli
ation of �D� �D, whi
h in
ludes four D�1EE=OO, with the double pre
ision is performedto solve ( �D� �D+si)xi = bi at RDDHMC. Be
ause the 
ondition number of �D� �D is as large as oneof D�D, multipli
ation of D�1EE=OO is 
al
ulated many times inside of multi-shift solver. In fa
t,most of the time is spent for this. Therefore optimization for multipli
ation of DEE=OO and 
ostredu
tion at 
omputing multipli
ation of D�1EE=OO, for example by de�ation, are important.5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
3

RDDHMC Yoshifumi Nakamura

0.1 0.12 0.14 0.16 0.18
κ

0.4

0.41

0.42

0.43

0.44

Pl
aq

ue
tte

EO
RDD active
RDD non-active

0.1 0.12 0.14 0.16 0.18
κ

0.98

0.99

1

1.01

1.02

e-∆
H

EO
RDD active
RDD non-active

Figure 3: The plaquette values(left) and e�DH (right) at b = 5:00 on 88 for ordinal even-odd pre
onditionedHMC, RDDHMC(a
tive) RDDHMC (level 1 non-a
tive link method) algorithm.
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Figure 4: Norm of gauge for
e (left) and fermioni
 for
e (right) with same algorithmi
 parameters asFig. (3).4. SummaryWe have been des
ribed RDDHMC algorithm and tested it on small latti
es. The values forplaquette are 
onsistent with standard HMC and e�DH is equal to 1 within error. So RDDHMCalgorithm seems to be 
orre
t. Unfortunately, we 
ould not see any gain in this test. One reasonis that inversion for �D� �D, whi
h is needed for both a
tion and for
e 
al
ulations is expensive sin
e�D� �D 
ontains D�1EE=OO. Besides this, for
e of f �( �D� �D)�1f is small even in 
ase of level 1 non-a
tive link method. On large latti
es we expe
t better situation sin
e for
e of f �( �D� �D)�1f issuppressed further by level 2 non-a
tive link method with bigger blo
k size.5. A
knowledgementsWewould like to thank Andrea Nobile, Dirk Pleiter and Hinnerk Stüben for useful dis
ussions.Numeri
al simulations were done on PC-Clusters at University of Regensburg.6
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Figure 5: The 
ost for HMC and RDDHMC (level 1 non-a
tive link method) at b = 5:00 on 88.Referen
es[1℄ M. A. Clark and A. D. Kennedy, Nu
l.Phys.Pro
.Suppl. 129 (2004) 850-852 [hep-lat/0309084℄,M. A.Clark, PoS(LAT2006)004.[2℄ M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98 051601, (2007).[3℄ M. Lüs
her, JHEP 0305, 052 (2003); Comput. Phys. Commun. 165, 199 (2005).[4℄ J. C. Sexton and D. H. Weingarten, Nu
l. Phys. B380, 665-678 (1992).[5℄ I. P. Omelyan, I. M. Mryglod, and R. Folk, Comput. Phys. Commun. 151, 272 (2003).[6℄ T. Takaishi and P. de For
rand, Phys. Rev. E73, 036706 (2006).[7℄ A. Nobile, PoS(LATTICE 2010)034.[8℄ Y. Osaki and K.-I. Ishikawa, PoS(LATTICE 2010)034.[9℄ J. C. Osborn, PoS(LATTICE 2008)029.

7


