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Rational Domain-Deomposed HMC
Yoshifumi Nakamura�Institut für Theoretishe Physik, Universität Regensburg, 93040 Regensburg, GermanyE-mail: yoshifumi.nakamura�physik.uni-regensburg.deWe study new HMC algorithm ombined the domain-deomposed HMC algorithm and the ratio-nal HMC algorithm. We perform numerial tests with the standard Wilson gauge ation and 2�avours of the standard Wilson fermions and ompare with HMC algorith of even-odd preondi-tioning with hronologial inverter. We ould not �nd gain with Rational Domain-DeomposedHMC on 84 latties.
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RDDHMC Yoshifumi Nakamura1. IntrodutionBy reent algorithmi and omputational developments the lattie QCD simulations aroundthe physial point beame possible. Espeially, the Rational Hybrid Monte Carlo (RHMC) algo-rithm [1, 2℄ and the domain-deomposed HMC (DDHMC) algorithm [3℄ led to remarkable ostredution.The RHMC algorithm, whih is an exat algorithm for any numbers of dynamial fermions,has been used widely over several years. It was originally proposed for rooted karnel sine Ralgorithm is inexat and PHMC needs extra alulation to orret metropolis hek. RHMC isalso useful for simulations with non-rooted karnel, e.g. 2 �avors of Wilson fermions. It arhivesgood algorithmi performane by ombining some aeleration methods, the nth root trik andrelaxation of solver's tolerane for eah fration, or separating frations to large fore and smallfore part and putting them at different time sale [2℄. It is also good point that programing is easy.One remez algorithm to alulate oef�ients for rational approximation and multi-shift solver isimplemented, one does not need non-trivial programing.The DDHMC algorithm makes a geometri separation of fermioni determinant into determi-nant for small bloks and Shur omplement. In DDHMC, inverse matrix of the Wilson Dira oper-ator is solved effetively by using Shwarz alternating proedure. In Shwarz alternating proedurepreonditioning, it is possible to use single preision aeleration. In order to suppress fores andminimize ommuniation overhead, the gauge links onneting domains and their staple links are�xed ("dead/alive link method") during moleular dynamis (MD) step was also proposed. Whendead/alive link method is employed, to make sure that all gauge links are updated with (almost)same rate, a method suh like parallel translation at every trajetory is neessary. For high perfor-mane omputing, multi nodes/ores arhiteture is absolutely imperative. Here ommuniationwould be a bottlenek. DDHMC is reasonable hoie in the sight of this beause its ommuni-ation overhead is less than the others. It is possible to get better performane out of them bydomain-deomposition on multiple ores arhitetures suh as Cell Cell/B.E. and GPGPU [7, 8℄.In this proeeding we desribe new algorithm ombined RHMC and DDHMC and report testresults for feasibility and ef�ieny on small latties.2. RDDHMC AlgorithmRational domain-deomposed HMC algorithm is of extension from DDHMC. First we per-form a domain deomposition of the Wilson Dira operator and even odd preonditioning.detD= det DEE DEODOE DOO!=det DEE DEOD�1OO0 1 !det �DEE 00 1!det 1 0DOE DOO! ;=det(1�DeoDoe)EE det �DEE det(1�DeoDoe)OO ;=det �Ddet �D ; (2.1)where �D= 1�D�1EEDEOD�1OODOE and det �D= det(1�DeoDoe)EE det(1�DeoDoe)OO. Note we writee/o as even or odd site and E/O as even or odd domain. By using g5 Hermitiity and Eq. (2.1), detDfor degenerate quark masses is expressed as 2
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RDDHMC Yoshifumi Nakamura
(detD)n f = det( �D� �D) n f2 det( �D� �D) n f2 ; (2.2)where n f is number of �avours. Even when n f is even, one ould alulate the determinant byusing the rational approximation like following,(detD)n f = [det( �D� �D) n f2 j1 ℄ j1 [det( �D� �D) n f2 j2 ℄ j2 ;X n f2 j � a0+åi=1 aiX+bi ; (2.3)where X is �D� �D or �D� �D. The partition funtion for n f = 2 isZ = Z DU [det( �D� �D) 1j1 ℄ j1 [det( �D� �D) 1j2 ℄ j2e�Sg ; (2.4)for n f = 2+1 Z = Z DU [det( �Dl� �Dl) 1j1 ℄ j1 [det( �Dl� �Dl) 1j2 ℄ j2 �[det( �Ds� �Ds) 12k1 ℄k1 [det( �Ds� �Ds) 12k2 ℄k2e�Sg : (2.5)As usual ost redution methods, multi timesales [4℄, OMF [5, 6℄ integrator and relaxingsolver's tolerane with keeping reversibility during MD steps are appliable. The single preisionaeleration an be used for multipliation of D�1EE=OO. It, however, is dif�ult to use hronologialguess as an initial guess for solver sine high preision is required for restarting multi-shift solverwhen there are many shifts [9℄.2.1 Dead/Alive links"Dead/Alive link method" and a translation method are introdued by Lüsher. Communia-tion overhead ould be minimized by this method. Generally one ould make any links non-ativeduring MD steps. We onsider 3 types for "Dead/Alive link method" as following.Ative link method: All links are alive during MD.Level 1 non-ative link method: Links onneting other domain are dead.Level 2 non-ative link method: Staples around Level 1 non-ative link are also dead.When two or more domains are put in a node, like reft �gue of Fig. (1), ommuniation is neededonly for multipliation of DOE and DEO in �D. But, when fores for gauge ation and lover termare alulated in ase of level 1 non-ative link method, data transfer is neessary sine derivativeof plaquette term of gauge ation and lover term at domain surfae depend on link variables whihare in other domains and hange during MD steps. In ase of level 2 non-ative link method, onedoes not need data transfer for retangular term, 1 level smeared hopping term, e.g. SLiNC fermionation, besides plaquette term and lover term. For smeared lover term and more smeared hoppingterm, further non-ative level is required to avoid ommuniation.3
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Figure 1: (left) Domain deomposition in the ase of 4�4�4�4 blok size. Light blue links denote non-ative link, level 1 non-ative link method. Red and blue points and wight and gray domain are even-oddsites and even/odd domains, respetively. (right) Level 2 non-ative link method, additionally links aroundblue links of left �gure are non-ative .2.2 Tuning rational fration partUsually to avoid generating oef�ients for the rational approximation every time we imple-ment/alulate spei� sets of oef�ients in advane. If approximation range of generated oef-�ients is wider that the ondition number of X , one an use them by shifting as following, whenrange does not over atual [min, max℄ of X .Xa = b�a(bX)a� b�a�0+åi=1 ibX+di � (2.6)where b is inverse of the minimum eigenvalue of X and i;di is generated by remez algorithm withrange for one to the ondition number of X , [1;C(X)℄. When the ondition number is big and anaurate approximation is required, CPU time to generate new oef�ients a number of times isunignorable exept for parallelizing the remaz algorithm.Fig. (2) is an example at some trajetory for relation between the number of averaged iterationand maximum fore over MD step for eah partial fration of ( �D� �D)�1=4 in ase that approximationrange is set as [min/p2 ,p2 max℄, blok size is 4�6�6�4 and non-ative link level is 1. When amulti-timesale integrator is used, the term that fore is small (big) and numerial ost is expensive(heap) are generally put at oarser (�ner) timesale. While it is possible to put partial frationsat different timesales, it, however, is easier to redue ost that relaxing toleranes of a few �rstfrations sine their fores are small and all fores are summed up.3. Numerial testsWe perform numerial tests with the standard Wilson ation at b = 5:00 and 2 �avours of stan-dard Wilson fermions for k = 0:100 to 0:17 (f. k = 0:187(1)) on 84 latties. To hek algorithm4
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Figure 2: The number of iteration and maximum fore for eah partial fration of ( �D� �D)�1=4 on 243� 32lattie for the standardWilson gauge ation at b = 5:60 and k = 0:1575 for n f = 2 standardWilson fermions.orretness we ompare results with HMC, whih is aelerated by even-odd preonditioning,hronologial inverter and multi timesale Omelyan integrator.For RDDHMC, hronologial inverter is not used sine multi-shift solver with the doublepreision does not work when there are many shifts, although multi timesale Omelyan integratoris used. The blok size of domain is 4�4�4�4 and both ative and level 1 non-ative link methodare tested. Level 2 non-ative link method is not tested beause 90% of links beome non-ativein ase of suh small domain size. For rational approximation Eq. (2.4), j1 = j2 = 2 and degreeof approximation is 20 and 25 for fore and ation alulation, respetively. To solve multi-shiftedsystem, multi-shift CG is used and GMRES is used to solve D�1EE and D�1OO.Fig. (3) shows plaquette values and e�DH for eah k for different algorithms. Statistis isO(2000) and �rst 1000 trajetories are disarded for thermalisation. The plaquette values are on-sistent and e�DH is 1 within error. In �g. (4) we plot gauge fore and fermioni fore as a funtionof k . The fores beome large as inreasing k . Fermioni fore of HMC is separated to twoparts, whih are of �D� �D and �D� �D by hanging to RDDHMC algorithm. When non-ative linkmethod is used, fores of gauge ation and f �( �D� �D)�1f are suppressed. On the other hand, foreof f �( �D� �D)�1f is not suppressed beause �D both for ative and level 1 non-ative link method aresame.In this test, numerial ost for RDDHMC is muh more expensive than HMC (see Fig (5)).The multipliation of �D� �D, whih inludes four D�1EE=OO, with the double preision is performedto solve ( �D� �D+si)xi = bi at RDDHMC. Beause the ondition number of �D� �D is as large as oneof D�D, multipliation of D�1EE=OO is alulated many times inside of multi-shift solver. In fat,most of the time is spent for this. Therefore optimization for multipliation of DEE=OO and ostredution at omputing multipliation of D�1EE=OO, for example by de�ation, are important.5
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Figure 3: The plaquette values(left) and e�DH (right) at b = 5:00 on 88 for ordinal even-odd preonditionedHMC, RDDHMC(ative) RDDHMC (level 1 non-ative link method) algorithm.
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Figure 4: Norm of gauge fore (left) and fermioni fore (right) with same algorithmi parameters asFig. (3).4. SummaryWe have been desribed RDDHMC algorithm and tested it on small latties. The values forplaquette are onsistent with standard HMC and e�DH is equal to 1 within error. So RDDHMCalgorithm seems to be orret. Unfortunately, we ould not see any gain in this test. One reasonis that inversion for �D� �D, whih is needed for both ation and fore alulations is expensive sine�D� �D ontains D�1EE=OO. Besides this, fore of f �( �D� �D)�1f is small even in ase of level 1 non-ative link method. On large latties we expet better situation sine fore of f �( �D� �D)�1f issuppressed further by level 2 non-ative link method with bigger blok size.5. AknowledgementsWewould like to thank Andrea Nobile, Dirk Pleiter and Hinnerk Stüben for useful disussions.Numerial simulations were done on PC-Clusters at University of Regensburg.6
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Figure 5: The ost for HMC and RDDHMC (level 1 non-ative link method) at b = 5:00 on 88.Referenes[1℄ M. A. Clark and A. D. Kennedy, Nul.Phys.Pro.Suppl. 129 (2004) 850-852 [hep-lat/0309084℄,M. A.Clark, PoS(LAT2006)004.[2℄ M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98 051601, (2007).[3℄ M. Lüsher, JHEP 0305, 052 (2003); Comput. Phys. Commun. 165, 199 (2005).[4℄ J. C. Sexton and D. H. Weingarten, Nul. Phys. B380, 665-678 (1992).[5℄ I. P. Omelyan, I. M. Mryglod, and R. Folk, Comput. Phys. Commun. 151, 272 (2003).[6℄ T. Takaishi and P. de Forrand, Phys. Rev. E73, 036706 (2006).[7℄ A. Nobile, PoS(LATTICE 2010)034.[8℄ Y. Osaki and K.-I. Ishikawa, PoS(LATTICE 2010)034.[9℄ J. C. Osborn, PoS(LATTICE 2008)029.
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