
P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience

Luigi Scorzato∗

European Center for Theoretical Studies in Nuclear Physicsand Related Areas (ECT*)
strada delle tabarelle, 286 - 38123 - Villazzano (Trento), Italy.
E-mail: scorzato@ect.it
(for the AuroraScience Collaboration)

AuroraScience is a research project at the crossroads of Computational Sciences and Computer

Architecture. In this paper we introduce the AuroraScienceproject and report its status, with

special consideration of its Lattice QCD applications.

The XXVIII International Symposium on Lattice Field Theory, Lattice2010
June 14-19, 2010
Villasimius, Italy

∗Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience Luigi Scorzato

1. Motivations

Over the years, the Lattice QCD community has accumulated anexceptional background both
in the efficient use of the available computing resources, and also in the development of application
driven HPC systems. Famous examples are the APE family of computers [1], QCDOC [2] and
the recent QPACE project [3]. The experience accumulated inLQCD was beneficial also to other
fields, as was shown by the development of the Janus architecture [4].

These projects not only provided efficient computing tools to the LQCD community, but also
strengthened its know-how in the efficient use of computing resources, in a way that can only come
from a close cooperation with the HW developers.

In recent years, the number of scientific fields, where HPC hasbecome essential for compe-
tition, has increased enormously. As a consequence, investments in HPC are highly strategic to
boost progress in many scientific disciplines at the same time. This is especially true if investments
in hardware are combined with the building of a network that is able to efficiently disseminate HPC
related know-how. In this context, those fields with a long HPC experience — such as LQCD —
may be very beneficial for a larger community.

AuroraScience is a research project at the crossroads of Computational Sciences and Com-
puter Architecture. It is a research and development project conducted by research groups from
INFN, ECT*/FBK, University of Trento, University of Padova, E.Mach Foundation, the Agenzia
Provinciale per la Protonterapia, who work in collaboration with the industrial partners Eurotech
and Intel.

The collaboration builds on the combined know-how collectively available to the members of
the collaboration on:

• design, development and operation of an application-driven high-performance computer sys-
tem (e.g., the series of APE machines, developed by INFN together with DESY and the Paris
Sud U.),

• algorithm development and physics analysis in computational areas of physics (Lattice Gauge
Theory, Computational Fluid Dynamics, Molecular Dynamics), Quantitative Biology (Pro-
tein Folding), Bio-Informatics (Gene Sequencing) and Medical Physics.

AuroraScience can be seen as a scientific project enabled by leading-edge computational sys-
tems and by specific competences in the useful operation of these systems. The main goals of the
project are the following:

• Tailor the architecture of a massively parallel computer system to the specific needs of a
large class of regular computational problems. This is doneby assembling a large number
of latest generation multicore CPUs (Intel Westmere) and interconnecting them with a low-
latency 3-D toroidal grid. The project uses the hardware recently introduced by Eurotech in
their Aurora class of machines. The AuroraScience toroidalnetwork environment (ATNW)
[5] is built on top of the TNW-project, which has been used in QPACE and then within
AuroraScience. The network processor is encoded in a firmware that has been installed on
Aurora FPGA.

2



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience Luigi Scorzato

• Procure and operate a medium-size Aurora prototype machine, optimized for AuroraScience.
The envisaged installation will have in excess of 100 processing nodes with a target peak
performance of some tens of Tflops. The project considers theprototype as a convincing
test proof that large-scale systems can be efficiently operated by a combination of off-shelf
high-end processors and application-driven interconnects. Following successful operation of
the prototype, the project will consider enlarged collaboration options, with the main goal of
developing a Pflops class machine optimized for scientific applications and fully available to
basic science.

• Modify, tune, port and optimize for the AuroraScience prototype key computational algo-
rithms in the scientific areas described above, and show effectiveness for state-of-the-art
scientific simulations.

2. Development Of The Computing System

2.1 The Aurora Architecture

Aurora is a multilevel, high performance parallel architecture that has been designed to deliver
very high sustained performance both for general purpose parallel applications and for several high
end massively parallel programs, such as those used for Lattice-QCD (LQCD) simulations or fluid-
dynamics modeling for which efficient scaling to thousands of processing nodes is mandatory.

The Aurora architecture is based on processing elements (PE) powered by latest generation
multi-core processors harnessed by a combination of several interconnection networks: a general
purpose high end interconnection system (Infiniband), a 3D grid network. Moreover, a fast syn-
chronization system is under development. These cooperateto meet the conflicting requirements of
flexibility for traditional applications and good scaling properties for massively parallel programs.
This section briefly describes Aurora at system level and presents some details of the PEs. The
interconnection structure is described in details in [5].

The Aurora processing element uses the latest Intel multi-core Westmere processors [6]. The
CPU/RAM block consists of two 6 cores Intel Westmere chips, each coupled to three banks of
DDR3 memory, for a total of 12GB. Each processor hosts 12MB ofL3 cache and each core has
256KB of L2 cache. The processor clock is 3.33 GHz. The Intel Tylersburg Southbridge is the
central hub of the Aurora node, handling all data transfers among the main functional blocks:
CPU/RAM, high performance network interface, general purpose network, additional peripherals.
A total of three QPI links connect the CPUs together and each CPU with the Tylersburg. The
interface for the 3D network and for the system-wide synchronization system connects to the PE
over one x8 PCI Express Gen 2 link (with a bandwidth of about 8 GByte/sec) made available by
the Tylersburg bridge.

In Aurora, PEs are hosted in a 6U rack-mountable enclosure (one chassis). Each chassis has
a symmetrical design and contains two sets of 16 node-cards,each connected by a backplane and
one root card. The root card integrates a Mellanox Infinibandswitch with 36 ports; 16 ports are
internally connected to the node-cards, while the remaining 20 are made available for external con-
nections. The backplane is used to provide the physical connection (data signals, power) between

3



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience Luigi Scorzato

all the elements; on the edges of the backplane, a set of high density connectors is used to deliver
the torus network signals via high speed flat cables.

The power dissipated by each chassis (32 boards) is of the order of≃ 10KW. Heat is removed
by direct liquid cooling, which means that each node-card isin contact with a ’coldplate’, through
which water flows. Very high heat transfer efficiency is possible thanks to the very favorable
heat capacity of water. Direct liquid cooling introduces additional complexity but also significant
benefits, mainly in terms of reduced total energy budget and reliability. In fact, the water flux per
each node-card is about 80 l/h and typical in/out temperatures are 25/30 °C. This means that free
cooling is possible for most part of the year and in most climates.

A fully populated 48U rack holds up to eight chassis and support equipment, corresponding to
a peak performance of approximately 40 Tflops.

2.2 The Trento Installation

The Aurora installation in Trento is located in the premisesof the new Interdisciplinary Lab-
oratory for the Computational Sciences (LISC), which is operated jointly by the FBK and the
University of Trento.

A dedicated circuit to treat and cool the water has been installed by the FBK under the direction
of TESI engineering. The system implements the techniques of free cooling and heat recovery,
in order to further save energy. As of today, two chassis are installed corresponding to a peak
performance of 10 Tflops. Four servers are connected to the rack via Infiniband and are dedicated
to operate a parallel gpfs file system. A dedicated service (“atnadmin”) has been designed to
manage the partitioning of the system with respect to the torus network connectivity: the user can
list available and active partitions, monitor status in terms of active processes, activate or delete
partitions. A customized queue system has been developed tomanage jobs submission.

3. Scientific Applications

The scientific applications studied within AuroraScience are Lattice QCD (ECT* and INFN
groups), Biophysics and Molecular Dynamics (UNITN), Lattice Boltzmann Methods (INFN),
Quantum Monte Carlo simulations of Many-Body Nuclear Physics (UNITN), Lorentz Integral
Transform methods for the study of Few-Body Nuclear Physics(UNITN), Bioinformatics (FEM)
and Monte Carlo simulations for Radiotherapy (ATreP).

A challenge of this project is to exploit the knowledge of thehardware to boost performance
of the above scientific applications. However, modern scientific codes typically include a large
variety of features, and put considerable emphasis on ensuring maintainability and portability. It is
very important that also highly optimized, hardware specific, solutions respect these constraints.

In this paper we concentrate in one specific case: that of porting tmLQCD – a widely used
Lattice QCD software package [7] – to exploit the Aurora architecture and in particular the ATNW
[5] communication network. In this case there are two distinct issues. First, the LQCD algorithms
should be adapted to exploit the architectural advantages of Aurora. These algorithmic ideas will be
useful also for other systems and should be implemented in the tmLQCD package in a portable way.
This is discussed in Section 3.1. A second issue is the one of adapting the tmLQCD code to use
the low level ATNW communication routines. Much of this workis useful for other applications

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience Luigi Scorzato

besides LQCD. It is therefore a good idea to collect the corresponding tools in a library, which is
described in Section 3.2.

3.1 Alternative Parallelization Schemes

The hardware features of a parallel machine affect stronglythe optimal parallelization strategy
of the Dirac operator. In a system with a high ratioρ = latency of the communications / time for
floating point operations, it is convenient to collect all data to be sent in big chunks. This is typical
of PC clusters, where all the borders are exchanged after a full sweep over the space-time volume.
The price of latency is payed only once, but cannot be hidden.

The opposite case is represented by machines in the APE family, where the ratioρ is very
low. Here one can afford exchanging the data just before theyare needed. This allows an optimal
overlap of communications and computations, which hides the communication latency.

Modern, strongly coupled and massively parallel computingsystems, like QPACE and AU-
RORA, have intermediate values ofρ . And the optimal parallelization must be different from both
the previous ones. One possibility is to split the computation into 3D slices. If we assume thatt
(=time) if the outmost loop, the computation in one 3D times-lice can be partially overlapped with
the exchange of thext, yt andzt borders. This strategy is appropriate, because the time to compute
the timelike links in the smallest possible local times-lice (43) is about 0.5µs, and for more realistic
local lattices, it becomes quickly much larger that the latency of the network (∼ 1µs). This method
was first proposed in [8], and we have implemented it in the tmLQCD code using standard MPI
tools.

A second improvement was the multi-thread parallelizationof the critical volume loops (via
openMP). The possible advantages come from saving both timeand memory for border exchanges
and from the higher flexibility of the parallelization (the number of cores does not need to divide
exactly the number of points in the edges). Disadvantages may be expected because of the higher
amount of serial parts, overheads and memory access conflicts. Also this feature was implemented
in the tmLQCD code.

Some results of the corresponding benchmark tests are givenbelow.

3.2 The Torus Library

The ATNW communication routines, described in [5], can be accessed directly by any high
level programming language. However, in order to minimize the communication overhead, they
are transparent to many hardware features. In particular they support a limited buffer, they can
only access nearest neighbors boards, and require different programming strategies for different
problem sizes.

Most scientific software uses MPI in an oblivious way with respect to those characteristics.
Porting the ATNW routines efficiently to these codes, without breaking important functionalities
and maintainability is a challenge. To this end we developeda special library (toruslib) that pro-
vides a convenient interface between the ATNW routines and atypical MPI application. This
library does not aim at a general support of MPI. Instead it implements via the ATNW only those
regular and nearest-neighbors communications that can be ported efficiently. The other communi-
cations are left to the Infiniband network.

5



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience Luigi Scorzato

Some functions in this library respect exactly the same prototypes as the corresponding MPI
functions and can be accessed with a simple recompilation ofthe program. Other functions, which
are meant to enable more flexibility in the optimizations, are provided to be used directly in the
application code.

3.3 Results On Aurora

In this section we report mainly on tests done on the benchmark code for the (even-odd pre-
conditioned) Hopping Matrix. We briefly mention a real application towards the end.

The deep hierarchical structure of modern high-end processors – and in particular the West-
mere – opens the possibility to many different parallelization strategies inside the node-card. For
example, 12 different MPI processes can be assigned to the 12processing cores of a single node-
card. Moreover, these MPI processes can be organized in any topology. Alternatively, all the 12
cores can be assigned to the same MPI process, but to different threads (implemented via openMP,
as mentioned in Section 3.1). Moreover, many mixtures of theabove approaches is possible. We
performed an extensive series of tests on the benchmark codeand found the following conclusions.
If possible, the most efficient parallelization is given by 12 MPI processes, organized in a 2x2x3
grid. If this is not possible (e.g. on a 323

×64 lattice), the best option is usually one of the following
(in the notationM-nr. of MPI processes,C-nr. of threads per MPI process):M8C1, M4C2, M4C3,
M2C5. The combinationM2C6 is rarely efficient, and the combinationsM3C4 andM6C2 always
performed very badly in all our tests.

Currently, the most efficient algorithm for the Hopping Matrix multiplication , which is used
for production runs in the Blue Gene/P systems, is called half-spinor in [7]. We compared it to the
newly developed time-split algorithm described in Section3.1. The performance gain on the largest
physical lattice that we considered (483

× 96) is very satisfactory: a factor between 1.8 (using 4
node cards) and 1.5 (using one chassis = 32 node-cards). On smaller physical lattices (323 ×64)
the gain goes down to a factor between 1.2 and 1.6. On the smallest physical lattices (163

×32) the
half-spinior algorithm is more efficient. This behaviour isexpected, since the time-split algorithm
is optimized for cache usage.

With the new algorithm we obtained up to 12% of the peak performance (which is 150 Gflops /
node-card). In Figure 1(a) we show an example of strong scaling, in which the problem size is kept
fixed and distributed across an increasing number of nodes. In Figure 1(b) we show an example of
weak scaling, in which the size of the problem in a single nodeis kept fixed while the full problem
size grows proportionally to the number of nodes. Weak scaling is nearly ideal, which means that
the Infiniband network is still very efficient up to the size that we considered. Strong scaling is
sensitive to more effects, but it appears to be still quite good up to 32 nodes.

The time-split algorithm is now being used in Aurora to produce dynamicalNf = 4, L = 24,
Twisted Mass, Iwasaki gauge configurations with the goal of computing non perturbatively the
renormalization factors. With these parameters the code isperforming a factor 1.5 better than the
version using the half-spinor algorithm.

We also tested the code that uses the 3D ATNW network, via the torus libraries. The ATNW
network is currently under development within the AuroraScience project and the full bandwidth
presently available (see [5]) is still too low to be competitive with the Infiniband switches on the
small systems that we are considering. However, the good news is that the effective bandwidth

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
3
9

AuroraScience Luigi Scorzato

0 10 20 30
0

5

10

15

20

Nr. of node cards

P
er

f./
no

de
 c

ar
d 

[G
F

lo
ps

]

 

 

483 x 96

323 x 64

(a) Example of strong scaling, as explained in the main text.
Errors are on the range of 5%.

0 10 20 30
0

5

10

15

20

Nr. of node cards

P
er

f./
no

de
 c

ar
d 

[G
F

lo
ps

]

 

 

483 x 96

323 x 64

(b) Example of weak scaling. The labels refer to the size of
the problem on 32 nodes. Errors are expected on the range of
5%.

(which includes all overheads and which is measured in the benchmark code) is not much below
the full available bandwidth.

Acknowledgments

The AuroraScience project is funded by the Provincia Autonoma di Trento (PAT) and the Isti-
tuto Nazionale di Fisica Nucleare (INFN), in the framework of an agreement with the Fondazione
Bruno Kessler (FBK). Seeweb.infn.it/aurorascience. LS is a member of the Interdis-
ciplinary Laboratory for Computational Sciences (LISC). We wish to thank our collaborators at
Eurotech and Intel. We are grateful to the members of QPACE for many valuable discussions and
design ideas, and we thank PetaQCD and QPACE for stimulatingmeetings.

References

[1] F. Belletti et al.,Computing for LQCD: apeNEXT, Computing in Science & Engineering8 (2006) 18.

[2] P.A. Boyle et al.,Overview of the QCDSP and QCDOC computers, IBM J. Res. & Dev.49 (2005)
351.

[3] H. Baier et al.,QPACE – a QCD parallel computer based on Cell processors, arXiv:0911.2174
[hep-lat].

[4] F. Belletti et al.,JANUS: an FPGA-based System for High Performance ScientificComputing,
Computing in Science & Engineering11 (2009) 48.

[5] M. Pivanti, F.S. Schifano, H. Simma,The AuroraScience Project: The Machine,
PoS(LAT2010)038.

[6] http://processorfinder.intel.com

[7] K. Jansen and C. Urbach,tmLQCD: a program suite to simulate Wilson Twisted mass Lattice QCD,
Comput. Phys. Commun.180(2009) 2717. CPHCB,180,2717;

[8] F. Belletti et al.,QCD on the Cell Broadband Engine, PoS(LAT2007)039. arXiv:0710.2442
[hep-lat].

7


