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1. Introduction and conclusions

Five-dimensional gauge theories are known to be perturbatively trivial,i.e. removing the ultra-
violet cut-off leads to a free theory of photons [1]. The epsilon expansions [2, 3] suggests that there
might be a non-perturbative ultraviolet fixed point, where the cut-off could be removed yielding an
interacting theory, but this has been elusive so far in Monte Carlo simulations. Recently [4, 5] a
ultraviolet fixed point was found within a mean-field computation. The computation is performed
using the regularization of a pureSU(2) gauge theory on an anisotropic Euclidean lattice and the
continuum limit can be taken numerically at fixed physical box size and fixed anisotropyξ . The
latter is defined as the ratio of the lattice spacing along the usual four dimensionsand the one along
the extra dimension,ξ = a4/a5. The continuum limit can be taken whenξ < 1, a region of phase
space that was not yet explored.

Monte Carlo simulations of five-dimensionalSU(2) gauge theories concentrated so far in the
region whereξ ≫ 1 [6, 7], where dimensional reduction from five to four dimensions is expected
to occur because the fifth dimension compactifies. The authors of [6] provided numerical evidence
for the existence of a critical radiusRc ≈ 0.3/

√
σ of the extra dimension (σ is the string tension),

below which the theory is four-dimensional.
In this talk we will concentrate on the regimeξ < 1. We first review the results of the mean-

field computation adding to the data of [5] results from a larger lattice. Dimensional reduction
seems to happen due to a localization mechanism. We will then present the exploration of the
phase diagram through Monte Carlo simulations. So far we located a line of first order bulk phase
transitions. It has been recently claimed in [8] that this phase transition couldbe of second order
for parameters that are outside the range we investigate in this talk (see Fig. 4). We also see second
order phase transitions due to compactification of one of the usual four dimensions. Detailed results
of our Monte Carlo simulations will be presented in a forthcoming publication [9].

2. The mean-field laboratory for five-dimensional gauge theories

The mean-field expansion for gauge theories is reviewed in [10]. Path integral expectation
values of operatorsO overSU(N) gauge linksU with actionSG[U ] are replaced by integrals over
N×N complex matricesV and Lagrange multipliersH

〈O[U ]〉 =
1
Z

∫

DV
∫

DH O[V]e−Seff[V,H] (2.1)

Seff = SG[V]+u(H)+(1/N)Retr{HV} , (2.2)

e−u(H) =
∫

DU e(1/N)Retr{UH} . (2.3)

The mean-field saddle point (or background) is defined by the minimization ofthe classical effec-
tive action in terms of constant fields

H −→ H1; V −→V1; Seff[V,H] =minimal. (2.4)

Gauge invariance is not broken, since arbitrary gauge transformationsof the constant background
solution Eq. (2.4) also fulfill the saddle point equations [10]. Correctionsare calculated from
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Figure 1: Left plot: the scalar massmH in the d-compact phase atγ = 0.25. It approaches zero consistently
with a second order phase transition atβc = 2.1349. Right plot: the ratio of the forceF5 along the fifth
dimension to the forceF4 along the four-dimensional hyperplanes, computed along a LCP.

Gaussian fluctuations around the saddle point solution

H = H +h and V = V +v. (2.5)

We impose a covariant gauge fixing onv. In [11] it was shown that this is equivalent to gauge-fix
the original linksU .

Our setup is aSU(2) gauge theory formulated on aLT × L3 × L5 Euclidean lattice with
anisotropic Wilson plaquette action [12]

Sw[V] =
β
4

[

1
γ ∑

4d−p

tr(1−V(p))+ γ ∑
5d−p

tr(1−V(p))

]

, (2.6)

where the sums run over all the four-dimensional and separately all the five-dimensional plaque-
ttes p counted with both orientations andV(p) is the product of the link variablesV around the
plaquettep. The dimensionless bare gauge couplingg0 is defined throughβ = 4/g2

0. We include
the anisotropy factorγ. At tree level in the gauge couplingγ = ξ = a4/a5. Due to the anisotropy,
the mean-field background isv0 along directionsµ = 0,1,2,3 andv05 along the fifth dimension.
We compute the following observables to leading order in the mean-field expansion [4]: the static
potentialV4(r) along the four-dimensional hyperplanes orthogonal to the fifth dimension,the static
potentialV5(r) along the fifth dimension, the scalar (or “Higgs”) massmH and the vector gauge
boson massmW.

3. Dimensional reduction and continuum limit

The phase diagram of the theory can be mapped through the values of the mean-field back-
ground. There is a confined phase (v0 = 0, v05 = 0), a layered phase (v0 6= 0, v05 = 0) and a
deconfined phase (v0 6= 0, v05 6= 0). By looking at the short distance behavior ofV4 we can decide,
whether dimensional reduction occurs, in which case the potential has a four-dimensional Coulomb
formV4 ∼ 1/r (as opposed to a five-dimensional Coulomb lawV4 ∼ 1/r2). We identify two dimen-
sionally reduced regions in the deconfined phase [4]: one atγ ≫ 1 (compact phase) and one at
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γ < 1 close to the phase boundary with the layered phase (we call it the “d-compact” phase, where
“d” stands for dual to the compact phase, since they are related byγ → 1/γ). In the following, we
study the properties of the d-compact phase.

In the left plot of Fig. 1 we show the results for the scalar massmH at γ = 0.25. It goes to
zero when the phase boundary with the layered phase atβc = 2.1349 is approached. It obeys the
scaling lawa4mH ∝ (1−βc/β )ν of the inverse correlation length of a second order phase transition
with exponent fitted toν = 0.5007. The valueν = 1/2 is the one of the four-dimensional Ising
model and is in agreement with the analysis of [13]. The vector gauge boson mass is essentially
independent ofβ andγ (at leading order in the mean-field expansion) and depends essentially only
onL througha4mW = cL/L+0.0010(5) with cL = 12.51(1). This means that in the infinite volume
limit the gauge boson is massless, i.e. no spontaneous gauge symmetry breaking takes place.

The existence of a second order phase transition means that we can take the continuum limit.
We define lines of constant physics (LCP) by keeping

γ = 0.55 andρ = mW/mH = 0.625 (3.1)

constant. We setL = LT = L5 and take the continuum limitL → ∞ by computations on a series
of latticesL = 200,300,400,608. In the right plot of Fig. 1 we show the ratio of the static force
F5(r) = {V5(r)−V5(r − a5)}/a5 along the extra dimension to the static forceF4(r) = {V4(r)−
V4(r − a4)}/a4 along the four dimensional hyperplanes. In order to plot physical quantities we
need a way to set the lattice spacing, i.e. a quantity which is in principle measurable in four
dimensions. Since the vector boson is massless, we cannot takea4mW. Instead we define a scale
rs similarly to [14] from the static forceF4 through the equationr2F4(r)|r=rs = s= 0.2. In Fig. 1
we plot the force ratio as a function ofr/rs. We observed that ther2F4 has a finite continuum limit
[5]. The data shown in Fig. 1 suggests thatr2F5 goes to zero asL → ∞. The interpretation of
this result is that the system reduces in the continuum to a set of non-interacting four-dimensional
hyperplanes. Dimensional reduction occurs through localization.

Since at short distance the static potentialV4 has a four-dimensional Coulomb form (see [5]),
we fit it for r/rs > 1 on the lattices along the LCP Eq. (3.1) to the form

V4(r) = µ +σ r +c0 log(r)+
c1

r
+

c2

r2 . (3.2)

We do the fits locally, i.e. the coefficientsσ , c0, c1 andc2 are functions ofr. In the range 2.15≤
r/rs≤ 2.80 the coefficients havesimultaneousplateaus, which we plot in Fig. 2 and Fig. 3 together
with their continuum extrapolations linear in(a4/rs)

2. We make the coefficients dimensionless by
appropriate powers ofrs. The continuum limit of the coefficientc1 is consistent with the universal
value of the Lüscher term−(d− 2)π/24 [15, 16] ind = 4. This is our strongest evidence for
dimensional reduction. In the continuum, we get a positive string tension together with a large
and negative logarithmic correction. We cannot explain at the moment the origin of the negative
logarithmic term, it hints to a dimensionally reduced theory in four dimensions different than a
pure gauge theory, where such a term does not occur.

4. The phase diagram from Monte Carlo simulations

The mean-field calculation gives a consistent picture of a second order phase transition at
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Figure 2: Continuum extrapolations of the coefficientc1 and the string tension
√

σ rs. The coefficients are
fitted locally and are averaged in the common plateau range 2.15≤ r/rs ≤ 2.80.
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Figure 3: Continuum extrapolations of the coefficientsc0rs andc2/rs.
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Figure 4: The phase diagram of the five-dimensionalSU(2) gauge theory based on Monte Carlo simulations.
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Figure 5: The static potentialV4 on a 324×L5 = 16 lattice in the deconfined phase atβ5 = 1.24,β4 = 2.10.

anisotropy parameterγ < 1. The next question is if this picture is validated by Monte Carlo simu-
lations.

In Fig. 4 we summarize our Monte Carlo results for the phase diagram. We denote by symbols
the location of phase transitions in theβ4 = β/γ andβ5 = βγ plane. The red empty squares and the
shaded line denote the bulk phase transition, which was first studied in [17]. It separates a confined
phase, where the expectation values of the Polyakov lines are zero, from a deconfined phase, where
they are non-zero along every direction and regardless of the lattice size. The bulk phase transition
is of first order everywhere in the range of parameters plotted. This is signaled by a hysteresis curve
in the plaquette observables and by a double peak in its susceptibility (when plotting simulation
results from both cold and hot starts). In order to see this hysteresis the lattice volume has to be
large enough and this is an issue in particular for the parameter region where γ < 1 (or β4 > β5),
since there one has to make the number of points in four directions large.

We study dimensional reduction by computing the static potential from Wilson loops. We
distinguish two classes of Wilson loops, the ones in the four-dimensional hyperplanes (in directions
(t,x), (t,y) and(t,z)) and the ones along the fifth dimension in directions(t,5). From the former
we extract the static potentialV4, from the latterV5. In computing the Wilson loops, we use the
multi-hit (or one-link) method [18] for the temporal links and two levels of HYP smearing [19] in
directions(x,y,z,5) for the spatial links. As an example, we show in Fig. 5 preliminary data for the
static potentialV4 in the deconfined phase atγ < 1. It can be perfectly fitted by a five-dimensional
Coulomb potential.

At present, the only second order phase transitions that we could locate correspond to finite
temperature (compactification). Atγ > 1 we confirm the results of [6]. Forγ < 1 the situation is
shown in Fig. 4, in the region below the dashed line corresponding toγ = 1 . We located lines
of phase transitions due to compactification of the fifth dimension or of the temporal dimension,
signaled by a peak in the susceptibility of the respective Polyakov loop. As they evolve in the
parameter space these lines cannot cross the line of the bulk transition, theywill instead accumulate
on it becoming always of first order. For the case of compactification withL5 = 2 points (blue empty
circles) or of withLT = 2 points (cyan filled circles), the finite temperature transition is always of
second order if it happens far enough from the bulk phase transition. The order withLT = 4 points
(green filled squares) is still under investigation. We will report in detail in [9].

6



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
5
9

Dimensional reduction and confinement from five dimensions Francesco Knechtli

Acknowledgments

N.Irges thanks the Alexander von Humboldt Foundation and A. Rago the German Science
Foundation (DFG) for support. The Monte Carlo simulations were carried out on the Cheops
supercomputer at the RRZK computing centre of the University of Cologne and on the cluster
Stromboli at the University of Wuppertal and we thank both Universities.

References

[1] K. R. Dienes, E. Dudas, T. Gherghetta,Grand unification at intermediate mass scales through extra
dimensions, Nucl. Phys. B537(1999) 47.

[2] H. Gies,Renormalizability of gauge theories in extra dimensions, Phys. Rev. D68 (2003) 085015.

[3] T. R. Morris,Renormalizable extra-dimensional models, JHEP0501(2005) 002.

[4] N. Irges, F. Knechtli,Mean-Field Gauge Interactions in Five Dimensions I. The Torus, Nucl. Phys. B
822(2009) 1, erratum: Ibid.840(2010) 438.

[5] N. Irges, F. Knechtli,A new model for confinement, Phys. Lett. B685(2010) 86.

[6] S. Ejiri, J. Kubo, M. Murata,A Study on the nonperturbative existence of Yang-Mills theories with
large extra dimensions, Phys. Rev. D62 (2000) 105025.

[7] P. de Forcrand, A. Kurkela, M. Panero,The phase diagram of Yang-Mills theory with a compact extra
dimension, JHEP1006(2010) 050.

[8] K. Farakos, S. Vrentzos,Exploration of the phase diagram of 5d anisotropic SU(2) gauge theory,
[arXiv:1007.4442].

[9] F. Knechtli, M. Luz, A. Rago, in preparation.

[10] J. -M. Drouffe, J. -B. Zuber,Strong Coupling and Mean Field Methods in Lattice Gauge Theories,
Phys. Rept.102(1983) 1.

[11] W. Rühl,The Mean Field Perturbation Theory Of Lattice Gauge Models With Covariant Gauge
Fixing, Z. Phys. C18 (1983) 207.

[12] K. G. Wilson,Confinement of Quarks, Phys. Rev. D10 (1974) 2445.

[13] B. Svetitsky, L. G. Yaffe,Critical Behavior At Finite Temperature Confinement Transitions, Nucl.
Phys. B210(1982) 423.

[14] R. Sommer,A New way to set the energy scale in lattice gauge theories andits applications to the
static force andαs in SU(2) Yang-Mills theory, Nucl. Phys. B411(1994) 839-854.

[15] M. Lüscher, K. Symanzik, P. Weisz,Anomalies of the Free Loop Wave Equation in the WKB
Approximation, Nucl. Phys. B173(1980) 365.

[16] M. Lüscher,Symmetry Breaking Aspects of the Roughening Transition in Gauge Theories, Nucl. Phys.
B 180(1981) 317.

[17] M. Creutz,Confinement and the criticality of space-time, Phys. Rev. Lett.43 (1979) 553.

[18] G. Parisi, R. Petronzio, F. Rapuano,A Measurement of the String Tension Near the Continuum Limit,
Phys. Lett. B128(1983) 418.

[19] A. Hasenfratz, F. Knechtli,Flavor symmetry and the static potential with hypercubic blocking, Phys.
Rev. D64 (2001) 034504.

7


