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1. Introduction and conclusions

Five-dimensional gauge theories are known to be perturbatively trigatemoving the ultra-
violet cut-off leads to a free theory of photons [1]. The epsilon exipaisg2, 3] suggests that there
might be a non-perturbative ultraviolet fixed point, where the cut-offccba removed yielding an
interacting theory, but this has been elusive so far in Monte Carlo simulat®esently [4, 5] a
ultraviolet fixed point was found within a mean-field computation. The computagiperformed
using the regularization of a puJ(2) gauge theory on an anisotropic Euclidean lattice and the
continuum limit can be taken numerically at fixed physical box size and firebtmopyé. The
latter is defined as the ratio of the lattice spacing along the usual four dimeasidtise one along
the extra dimensior§ = as/as. The continuum limit can be taken whén< 1, a region of phase
space that was not yet explored.

Monte Carlo simulations of five-dimensionaU(2) gauge theories concentrated so far in the
region where > 1 [6, 7], where dimensional reduction from five to four dimensions is etqok
to occur because the fifth dimension compactifies. The authors of [6ld@@wnumerical evidence
for the existence of a critical radid& =~ 0.3/./0 of the extra dimension((is the string tension),
below which the theory is four-dimensional.

In this talk we will concentrate on the reginde< 1. We first review the results of the mean-
field computation adding to the data of [5] results from a larger lattice. Dimealsieduction
seems to happen due to a localization mechanism. We will then present theatirplaf the
phase diagram through Monte Carlo simulations. So far we located a linstadifiter bulk phase
transitions. It has been recently claimed in [8] that this phase transition beubd second order
for parameters that are outside the range we investigate in this talk (se¢. i dlso see second
order phase transitions due to compactification of one of the usual foundioms. Detailed results
of our Monte Carlo simulations will be presented in a forthcoming publication [9]

2. The mean-field laboratory for five-dimensional gauge theaoes

The mean-field expansion for gauge theories is reviewed in [10]. Patjrahtexpectation
values of operatorg over SU(N) gauge linkdJ with actionSs[U] are replaced by integrals over
N x N complex matrice¥ and Lagrange multipliers

(OU]) = /DV/DH V] SVH (2.1)
S = (1/N)Retr{HV} (2.2)
o UH) _ /DU el/N Retr{UH}‘ (2.3)

The mean-field saddle point (or background) is defined by the minimizatitreaflassical effec-
tive action in terms of constant fields

H — H1;V —V1; Sx[V,H] =minimal. (2.4)

Gauge invariance is not broken, since arbitrary gauge transformatidhe constant background
solution Eq. (2.4) also fulfill the saddle point equations [10]. Correctianms calculated from
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Figure 1: Left plot; the scalar massy in the d-compact phase gt= 0.25. It approaches zero consistently
with a second order phase transitionfBat= 2.1349. Right plot: the ratio of the forde; along the fifth
dimension to the forcg&,; along the four-dimensional hyperplanes, computed alongGR L

Gaussian fluctuations around the saddle point solution
H=H+h andV =V +v. (2.5)

We impose a covariant gauge fixing enin [11] it was shown that this is equivalent to gauge-fix
the original linksU.

Our setup is aSU(2) gauge theory formulated on lar x L3 x Ls Euclidean lattice with
anisotropic Wilson plaquette action [12]

_B|?t _ _
SN[V]—4[y4;ptf(1 V(D))+V5;ptr(1 MONE (2.6)

where the sums run over all the four-dimensional and separately all tadifivensional plaque-
ttes p counted with both orientations an{ p) is the product of the link variablég around the
plaquettep. The dimensionless bare gauge couplgads defined througtB = 4/g3. We include
the anisotropy factoy. At tree level in the gauge coupling= £ = as/as. Due to the anisotropy,
the mean-field background ¥g along directionsu = 0,1, 2,3 andvgs along the fifth dimension.
We compute the following observables to leading order in the mean-field xped]: the static
potentialV4(r) along the four-dimensional hyperplanes orthogonal to the fifth dimeniierstatic
potentialVs(r) along the fifth dimension, the scalar (or “Higgs”) masg and the vector gauge
boson massy.

3. Dimensional reduction and continuum limit

The phase diagram of the theory can be mapped through the values of dhefigid back-
ground. There is a confined phasg £ 0, Vo5 = 0), a layered phaseid # 0, Vos = 0) and a
deconfined phas&({ # 0, Vgs # 0). By looking at the short distance behavioMafwe can decide,
whether dimensional reduction occurs, in which case the potential has-difoensional Coulomb
formV, ~ 1/r (as opposed to a five-dimensional Coulomb Yaw- 1/r?). We identify two dimen-
sionally reduced regions in the deconfined phase [4]: onexatl (compact phase) and one at
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y < 1 close to the phase boundary with the layered phase (we call it the “dacthighase, where
“d” stands for dual to the compact phase, since they are relatgd-byL/y). In the following, we
study the properties of the d-compact phase.

In the left plot of Fig. 1 we show the results for the scalar magsat y = 0.25. It goes to
zero when the phase boundary with the layered phaBg-at2.1349 is approached. It obeys the
scaling lawaymy O (1—B:/B)" of the inverse correlation length of a second order phase transition
with exponent fitted tov = 0.5007. The valuey = 1/2 is the one of the four-dimensional Ising
model and is in agreement with the analysis of [13]. The vector gaugenboass is essentially
independent off andy (at leading order in the mean-field expansion) and depends essentiglly on
onL throughasmy = ¢, /L+0.001Q5) with ¢, = 12.51(1). This means that in the infinite volume
limit the gauge boson is massless, i.e. no spontaneous gauge symmetrydtakésplace.

The existence of a second order phase transition means that we caretakatinuum limit.

We define lines of constant physics (LCP) by keeping

y=0.55 andp = my/my = 0.625 (3.1)

constant. We sdt = Lt = Ls and take the continuum limlt — o by computations on a series
of latticesL = 200,300,400, 608. In the right plot of Fig. 1 we show the ratio of the static force
Fs(r) = {Vs(r) — V5(r — as) } /as along the extra dimension to the static fofegr) = {Va(r) —
Vi4(r —as)}/a4 along the four dimensional hyperplanes. In order to plot physical tiiemnwe
need a way to set the lattice spacing, i.e. a quantity which is in principle me&suimatour
dimensions. Since the vector boson is massless, we canndjalge Instead we define a scale
rs similarly to [14] from the static forc&, through the equatior? F4(r)|r—r, = s= 0.2. In Fig. 1
we plot the force ratio as a function pfrs. We observed that the F, has a finite continuum limit
[5]. The data shown in Fig. 1 suggests thaFs goes to zero ak — . The interpretation of
this result is that the system reduces in the continuum to a set of non-iirigriaur-dimensional
hyperplanes. Dimensional reduction occurs through localization.

Since at short distance the static potentiahas a four-dimensional Coulomb form (see [5]),
we fit it for r /rs > 1 on the lattices along the LCP Eq. (3.1) to the form

V4(r):u+or+colog(r)+%+%. (3.2)

We do the fits locally, i.e. the coefficients ¢y, ¢; andc; are functions of. In the range 25 <
r/rs < 2.80 the coefficients hav@multaneouplateaus, which we plot in Fig. 2 and Fig. 3 together
with their continuum extrapolations linear {as/rs)2. We make the coefficients dimensionless by
appropriate powers of. The continuum limit of the coefficiem; is consistent with the universal
value of the Luscher term-(d — 2)711/24 [15, 16] ind = 4. This is our strongest evidence for
dimensional reduction. In the continuum, we get a positive string tensiothergeith a large
and negative logarithmic correction. We cannot explain at the moment tha ofithe negative
logarithmic term, it hints to a dimensionally reduced theory in four dimensionsreliffahan a
pure gauge theory, where such a term does not occur.

4. The phase diagram from Monte Carlo simulations

The mean-field calculation gives a consistent picture of a second ohdee fdransition at
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Figure 2: Continuum extrapolations of the coefficiemtand the string tensiogyors. The coefficients are

fitted locally and are averaged in the common plateau raride<2r /rs < 2.80.
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Figure 4: The phase diagram of the five-dimensio8gl(2) gauge theory based on Monte Carlo simulations.
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Figure 5: The static potentia¥s on a 32 x Ls = 16 lattice in the deconfined phasefgt= 1.24, 3, = 2.10.

anisotropy parameter< 1. The next question is if this picture is validated by Monte Carlo simu-
lations.

In Fig. 4 we summarize our Monte Carlo results for the phase diagram. Vétedeyn symbols
the location of phase transitions in thg= 3/y andBs = By plane. The red empty squares and the
shaded line denote the bulk phase transition, which was first studied in{$éparates a confined
phase, where the expectation values of the Polyakov lines are zeroafieconfined phase, where
they are non-zero along every direction and regardless of the latticel$iedoulk phase transition
is of first order everywhere in the range of parameters plotted. Thisrialsig by a hysteresis curve
in the plaquette observables and by a double peak in its susceptibility (whigingkimulation
results from both cold and hot starts). In order to see this hysteresisttice klume has to be
large enough and this is an issue in particular for the parameter regioe wket (or 34 > [s),
since there one has to make the number of points in four directions large.

We study dimensional reduction by computing the static potential from Wilsorslodye
distinguish two classes of Wilson loops, the ones in the four-dimensionatpigmes (in directions
(t,x), (t,y) and(t,z)) and the ones along the fifth dimension in directién®). From the former
we extract the static potentigly, from the latteVs. In computing the Wilson loops, we use the
multi-hit (or one-link) method [18] for the temporal links and two levels of HY#esiring [19] in
directions(x,y, z,5) for the spatial links. As an example, we show in Fig. 5 preliminary data for the
static potentiaV, in the deconfined phase pk 1. It can be perfectly fitted by a five-dimensional
Coulomb potential.

At present, the only second order phase transitions that we could lamaésgond to finite
temperature (compactification). At> 1 we confirm the results of [6]. For < 1 the situation is
shown in Fig. 4, in the region below the dashed line corresponding=tdl . We located lines
of phase transitions due to compactification of the fifth dimension or of the teingionension,
signaled by a peak in the susceptibility of the respective Polyakov loop. éséolve in the
parameter space these lines cannot cross the line of the bulk transitiowjlthiestead accumulate
on it becoming always of first order. For the case of compactificationlwith 2 points (blue empty
circles) or of withLy = 2 points (cyan filled circles), the finite temperature transition is always of
second order if it happens far enough from the bulk phase transitit@onder withLt = 4 points
(green filled squares) is still under investigation. We will report in detai®]n [
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