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The research of strongly coupled beyond-the-standard-model theories has generated significant

interest in non-abelian gauge field theories with differentnumber of fermions in different rep-

resentations. Motivated by the increased interest to various technicolor scenarios, we study the

non-perturbative improvement of the Wilson-clover actionwith SU(2) gauge fields and 2 fla-

vors of fermions in the fundamental and adjoint representations. The Sheikholeslami-Wohlert

coefficients are fixed using Schrödinger functional boundary conditions. The adjoint representa-

tion theory is a candidate for a "minimal technicolor" theory, already studied on the lattice using

unimproved Wilson fermions.
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1. Introduction

Gauge theories with fermions in non-fundamental representations have recently been proposed
as candidates for phenomenologically viable Technicolor models. A particularly simple example
of these is so-calledminimal walking technicolor(MWT), a theory with SU(2) gauge fields and
two adjoint representation fermions [1, 2, 3]. Analytical studies suggestthat this theory has either
an infrared stable fixed point or the coupling constant “walks,” i.e. evolves very slowly over some
energy range. This question is inherently non-perturbative and lattice simulations are needed.

Initial lattice studies of MWT suggest that the theory has an infrared stable fixed point [4, 5, 6,
7, 8, 9, 10]. However, these investigations were made with non-improved Wilson fermion action,
which is known to have largeO(a) cutoff effects. The cutoff effects can be especially significant
when the evolution of the coupling constant is measured with the Schrödinger functional method
[4, 7]; where, with the unimproved action, it was not possible to perform the continuum limit in
a controlled fashion. Thus, it is important to use actions which have as small cutoff effects as
possible. This becomes especially important at relatively large bare lattice couplings, which have
been observed to be necessary in order to study the relevant physicaldomain.

Our aim is to calculate theO(a) improvement coefficients for the Wilson-clover action for
MWT, and, for comparison, also for SU(2) gauge theory with two fundamental fermion flavours.
We do this in two stages: in this work we describe the non-perturbative evoluation of the clover
(Sheikholeslami-Wohlert) coefficient in these two theories using the Schrödinger functional method
[11, 12, 13, 14]. In order to apply the Schrödinger functional for thecalculation of the coupling
constant, we also need to calculate various “boundary improvement” coefficients. This we do using
perturbation theory, and the calculation is described in these proceedingsin ref. [16].

2. The Models

We study the nonperturbative ordera improvement of two lattice gauge models, one where
two flavors of fermions couple to the fundamental representation of an SU(2) gauge field, and one
where they couple to the adjoint representation. They share the same standard Wilson gauge action
for SU(2). The fermion action is

SF = a4∑
x

ψ̄(x)(D+m0)ψ(x) (2.1)

D =
1
2

[
γµ(∇∗

µ +∇µ)−a∇∗
µ∇µ

]
+cSW

ia
4

σµν F̂µν , (2.2)

whereF̂µν is the symmetrized field strength tensor (clover) and

∇µψ(x) =
1
a

[
Ũµ(x)ψ(x+ µ̂)−ψ(x)

]
, ∇∗

µψ(x) =
1
a

[
ψ(x)−Ũ†

µ(x−µ)ψ(x− µ̂)
]
. (2.3)

HereŨ is the gauge link in the appropriate fermion representation, that is, it is the standard funda-
mental SU(2) link for fundamental representation fermions, and for adjoint fermions it is

Ũab
µ (x) = 2Tr

(
λ aUµ(x)λ bU†

µ(x)
)

, λ a =
1
2

σa, a = 1,2,3. (2.4)
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3. Schrödinger functional scheme

Our method for determining the improvement coefficientcSW follows refs. [12, 13, 14], where
the Schrödinger functional scheme is used to determinecSW in the case ofQCD. However, for the
adjoint representation fermions (and, in general, for fermions in higher representations) the method
is modified, as described below.

We shall work with lattices of sizeL3×T. In the Schrödinger functional scheme the spatial
gauge fields are fixed to constant values at time slicesx0 = 0 andx0 = T, chosen so that these
generate a chromoelectric background field.

For fundamental fermions we use color diagonal background fields as inref. [12]

Uk(x0 = T) = exp(iC′), C′ = −
π
4

aσ3

L
(3.1)

Uk(x0 = 0) = exp(iC), C = −
3π
4

aσ3

L
. (3.2)

These generate a chromoelectric background field∝ σ3. Different boundary conditions give rise
to different cutoff effects in fermion propagation when the source is atx0 = 0 or atx0 = T. The
idea is to find the value ofcSW which maximizes the symmetry between the two cases, leading to
automaticO(a) improvement.

For adjoint representation fermions, however, complications emerge. Using Eq. (2.4) we im-
mediately notice that the boundary matrices (3.1), (3.2) are transformed to form

Ũk =




. . . . . . 0

. . . . . . 0
0 0 1




Thus, there is a component of the adjoint fermion spinor which simply does not see the background
field. This feature is independent of the color structure chosen for the boundary conditions. It turns
out that regardless of how the fermion sources or the constant boundary conditions are chosen, at
long distances the fermions propagate as if there is no background field. In other words, the adjoint
fermions “see” the background electric field only at short distances.

This property gives the background field method significantly less leverage for determining
cSW for adjoint representation fermions. In order to maximize the effect of the different bound-
aries, we choose to maximize the difference between the two boundaries, and we use the following
asymmetric "non-Abelian" boundary conditions: links at the upperx0 = T boundary are chosen to
be trivial

U(x0 = T,k) = I (3.3)

and at the lower boundaryx0 = 0 we use

U(x0 = 0,k) = exp(aCk), Ck =
π
2

τk

iL
. (3.4)

These boundary conditions do not make the problem to vanish, but ameliorateit to a degree. We
also note that these boundary conditions are useful only for determiningcSW, not for evaluating the
coupling constant.
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We define the fermion mass through the partial conservation of the axial current (PCAC) rela-
tion:

mQ(x0) =
1
2

1
2(∂ ∗

0 +∂0) fA(x0)+cAa∂ ∗
0 ∂0 fP(x0)

fP(x0)
≡ r(x0)+cAs(x0), (3.5)

where

Aa
µ = ψ̄(x)γ5γµ

1
2

σaψ(x), (3.6)

Pa = ψ̄(x)γ5
1
2

σaψ(x), (3.7)

fA(x0) = −a6∑
y,z
〈Aa

0(x)ζ̄ (y)γ5
1
2

σaζ (z)〉, (3.8)

fP(x0) = −a6∑
y,z
〈Pa(x)ζ̄ (y)γ5

1
2

σaζ (z)〉. (3.9)

Here the sourcesζ (z) live on the time slicex0 = 0. The term proportional tocA in Eq. (3.5) is
irrelevant in the continuum limit, but it is needed to cancelO(a)-contributions to the axial current
in the Wilson action.

Analogously with Eqs. (3.8,3.9), we define another set of correlation functions, f ′A(T − x),
f ′P(T −x) andr ′(T −x), s′(T −x), where the source is now at time slicex0 = T. In order to obtain
an expression which is independent ofcA we consider the combination [13]

M(x0,y0) = r(x0)−s(x0)
r(y0)− r ′(y0)

s(y0)−s′(y0)
, (3.10)

which coincides withmQ up toO(a2) corrections. In our calculations here we define the fermion
mass withm= M(T/2,T/4).

Further definingM′ with obvious replacements to (3.10) gives us two correlation functions
which, in the absence of cutoff effects, are equal. Thus, the quantity

∆M ≡ M(
3
4

T,
1
4

T)−M′(
3
4

T,
1
4

T) (3.11)

vanishes up to corrections ofO(a2) if cSW has its proper value.1

In order to achieve fullO(a) improvement in the Schrödinger functional schema we need to
cancel also theO(a) errors caused by the fixed boundaries. We treat these by using 1-loopimproved
boundary conditions, discussed in ref. [16]. These are not necessary, however, for the calculation
here.

4. The simulations and results

In order to evaluatecSW we used the following routine: we choose lattice volumeL3×T =

83×16 for both fundamental and adjoint representation fermions, and a set of values of the lattice
couplingβ .

1To be more precise, at tree level (g= 0,cSW = 1) both∆M andm= M(T/2,T/4) have small values, which depends
on the boundary conditions and the lattice size. In order to obtain the correct weak coupling limit We actually match∆M
andm to these tree-level values, not to zero (see ref. [13]).
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Figure 1: cSW for two flavors of fundamental representation fermions. Thesolid line is the interpolating fit,
Eq. (4.1), and the dashed line is the 1-loop perturbative value

1. For a givenβ , we choose initialcSW (typically extrapolating from results obtained with
previous values ofβ ).

2. We choose a couple of values forκ = 1
8+2am0

, and determine by interpolation the critical
valueκc(β ,cSW) where the fermion massM(T/2,T/4) vanishes.

3. Once we have an estimate of the criticalκ, we choose a new value forcSW and repeat the
search ofκc.

4. At the same time, we measure∆M(cSW). Now we can linearly interpolate/extrapolate incSW

so that∆M vanishes, obtaining the desired value ofcSW(β ). Using simulations at this final
cSW we can relocate the criticalκ, if desired, and verify the results of the interpolation.

In Figs.1 and 2 we show our results for the clover coefficientcSW for both fundamental and
adjoint representations. The values ofβ used areβ = 2.5,3,4,5,6,8, and alsoβ = 10 for the
adjoint representation.

Finally, the measured values forcSW can be fitted with a rational interpolating expression,
which can used in simulations for this range ofβ -values. For fundamental representation fermions
we use the perturbative 1-loop resultcSW = 1−0.1551(1)g2 +O(g4) [17] to constrain the fit:

cSW,fund =
1−0.090254g2−0.038846g4 +0.028054g6

1− (0.1551+0.090254)g2 . (4.1)

For the adjoint representation the perturbative result is not known, andwe obtain the fit result

cSW,adj =
1+0.032653g2−0.002844g4

1−0.314153g2 . (4.2)
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Figure 2: cSW for two flavors of adjoint representation fermions, with theinterpolating fit, Eq. (4.2).

In both cases the interpolating fits are valid forβ >∼ 2.5. For the adjoint fermions it is difficult to
reach smallerβ -values becausecSW grows rapidly; and while we were able to reachβ = 2.3 the
errors were too large to constrain the fit (4.2) further.
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