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1. Introduction

Gauge theories with fermions in non-fundamental representations ltrelgebeen proposed
as candidates for phenomenologically viable Technicolor models. A particsimple example
of these is so-calledhinimal walking technicolo(MWT), a theory with SU(2) gauge fields and
two adjoint representation fermions [1, 2, 3]. Analytical studies sugbesthis theory has either
an infrared stable fixed point or the coupling constant “walks,” i.e. eslery slowly over some
energy range. This question is inherently non-perturbative and latticéegions are needed.

Initial lattice studies of MWT suggest that the theory has an infrared stxielé fioint [4, 5, 6,
7, 8, 9, 10]. However, these investigations were made with non-improvksdfermion action,
which is known to have larg®(a) cutoff effects. The cutoff effects can be especially significant
when the evolution of the coupling constant is measured with the Schrodimggtidnal method
[4, 7]; where, with the unimproved action, it was not possible to perforenctimtinuum limit in
a controlled fashion. Thus, it is important to use actions which have as sutaff effects as
possible. This becomes especially important at relatively large bare lattigpdirogs, which have
been observed to be necessary in order to study the relevant pldicain.

Our aim is to calculate th®(a) improvement coefficients for the Wilson-clover action for
MWT, and, for comparison, also for SU(2) gauge theory with two funddaaidermion flavours.
We do this in two stages: in this work we describe the non-perturbative ai@tuof the clover
(Sheikholeslami-Wohlert) coefficient in these two theories using the Scig@diunctional method
[11, 12, 13, 14]. In order to apply the Schrodinger functional fordakulation of the coupling
constant, we also need to calculate various “boundary improvement’aeetf. This we do using
perturbation theory, and the calculation is described in these proceéulirggs[16].

2. The Models

We study the nonperturbative ordaimprovement of two lattice gauge models, one where
two flavors of fermions couple to the fundamental representation of a@)$jd(ige field, and one
where they couple to the adjoint representation. They share the samardtsitbon gauge action
for SU(2). The fermion action is

S =a'y g(x) (D +mo) Y(x) (2.1)
1 i -
D= 2 [VIJ(DZ + DIJ) - aDLD,u] +CSW§GNVFNV7 (2.2)

wherelf,“, is the symmetrized field strength tensor (clover) and

1
a

1

a0 = 2 [u00we+ B =9, D0 = [900 -0l x—wix—)] . (23)

HereU is the gauge link in the appropriate fermion representation, that is, it is theesthfunda-
mental SU(2) link for fundamental representation fermions, and for adimions it is

_ 1
Uab(x) = 2Tr ()\ auu(x)/\bulj(x)) . A*=Jo% a=123 (2.4)
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3. Schroédinger functional scheme

Our method for determining the improvement coefficiesy follows refs. [12, 13, 14], where
the Schrodinger functional scheme is used to deterigdgn the case oQCD. However, for the
adjoint representation fermions (and, in general, for fermions in higipgesentations) the method
is modified, as described below.

We shall work with lattices of size3 x T. In the Schrédinger functional scheme the spatial
gauge fields are fixed to constant values at time shiges 0 andxg = T, chosen so that these
generate a chromoelectric background field.

For fundamental fermions we use color diagonal background fieldsrat f12]

mao?

3
U(¥o = 0) = exp(iC), C = —37"'3%. (3.2)

These generate a chromoelectric background fietrf. Different boundary conditions give rise
to different cutoff effects in fermion propagation when the source ig at 0 or atxo = T. The
idea is to find the value afsy which maximizes the symmetry between the two cases, leading to
automatidO(a) improvement.

For adjoint representation fermions, however, complications emergeg Bsjin(2.4) we im-
mediately notice that the boundary matrices (3.1), (3.2) are transformenrrio fo

Thus, there is a component of the adjoint fermion spinor which simply ddeserdhe background
field. This feature is independent of the color structure chosen foratedary conditions. It turns
out that regardless of how the fermion sources or the constant bguemiaditions are chosen, at
long distances the fermions propagate as if there is no background figthdr words, the adjoint
fermions “see” the background electric field only at short distances.

This property gives the background field method significantly less legei@gdetermining
csw for adjoint representation fermions. In order to maximize the effect of iffiereint bound-
aries, we choose to maximize the difference between the two boundadesearse the following
asymmetric "non-Abelian" boundary conditions: links at the upget T boundary are chosen to
be trivial

UX=T,k) =1 (3.3)

and at the lower boundarg = 0 we use

k
mT
U (%o = 0,k) = exp(aG), Ck:EI (3.4)
These boundary conditions do not make the problem to vanish, but amelici@ate degree. We
also note that these boundary conditions are useful only for deternagjpaot for evaluating the

coupling constant.
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We define the fermion mass through the partial conservation of the axraht(PCAC) rela-

tion:
%(d* + 00) fa(Xo) + caad; do fr(Xo)

mo(xo) = 5 o 00) = (Xo) + CaS(X0), (3.5)
where
AL = tﬁ(X)ysvu%GaLﬂ(X), (3.6)
pe — Lﬁ(st}oaw(x) @.7)
fa(xo) = —a° 2, (A809L )3 aaz< ), (3.8)
fr(x0) = —a° yzZ<F>""<x>z<y>yz—,§oaz<z>>- (3.9)

Here the sourceg(z) live on the time slicexg = 0. The term proportional toa in Eq. (3.5) is
irrelevant in the continuum limit, but it is needed to can®¢h)-contributions to the axial current
in the Wilson action.

Analogously with Egs. (3.8,3.9), we define another set of correlatioatifums, fA(T — X),
fo(T —x) andr’(T —x), (T —x), where the source is now at time slixge= T. In order to obtain
an expression which is independentgfwe consider the combination [13]

M(Xo,¥o) = (Xo) — S(xO)M (3.10)

which coincides withmg up to &(a2) corrections. In our calculations here we define the fermion
mass withm= M(T /2, T /4).

Further definingM’ with obvious replacements to (3.10) gives us two correlation functions
which, in the absence of cutoff effects, are equal. Thus, the quantity

3_1 3_1
AM=M(5T, 7T) -~ M’ G737 (3.11)
vanishes up to corrections ﬁf(az) if csw has its proper valud.

In order to achieve fulD(a) improvement in the Schrodinger functional schema we need to
cancel also th®(a) errors caused by the fixed boundaries. We treat these by using Iripapved
boundary conditions, discussed in ref. [16]. These are not nagesowever, for the calculation
here.

4. The simulations and results

In order to evaluatesy we used the following routine: we choose lattice volunie< T =
82 x 16 for both fundamental and adjoint representation fermions, and & &&ues of the lattice
couplingf3.
1To be more precise, at tree levgk£ 0, csyw = 1) bothAM andm= M(T /2, T /4) have small values, which depends

on the boundary conditions and the lattice size. In order to obtain the tarea& coupling limit We actually matchM
andmto these tree-level values, not to zero (see ref. [13]).
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c,,, for fundamental representation
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Figure 1: csw for two flavors of fundamental representation fermions. $ti@ line is the interpolating fit,
Eqg. (4.1), and the dashed line is the 1-loop perturbativeeval

1. For a givenf, we choose initiakcsy (typically extrapolating from results obtained with
previous values oB).

2. We choose a couple of values for= m, and determine by interpolation the critical
valuek¢(B,csw) where the fermion masd (T /2, T /4) vanishes.

3. Once we have an estimate of the critigalwe choose a new value fogw and repeat the
search ok..

4. Atthe same time, we measuk® (csw). Now we can linearly interpolate/extrapolatecisy
so thatAM vanishes, obtaining the desired valuecgfy(3). Using simulations at this final
csw We can relocate the critical, if desired, and verify the results of the interpolation.

In Figs.1 and 2 we show our results for the clover coefficpy for both fundamental and
adjoint representations. The valuesfused are3 = 2.5,3,4,5,6,8, and alsg8 = 10 for the

adjoint representation.
Finally, the measured values fogy can be fitted with a rational interpolating expression,

which can used in simulations for this range®¥alues. For fundamental representation fermions
we use the perturbative 1-loop rescdty = 1 —0.1551(1)g? + O(g*) [17] to constrain the fit:

. _ 1-0.0902542 — 0.038846* + 0.028054f°
SWifund = 1—(0.1551+0.090254¢? '

For the adjoint representation the perturbative result is not knownyarabtain the fit result

o _ 1+0.032653° —0.002844f"
SW,adj = 1-0.314153p

(4.1)

(4.2)
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c,,, for adjoint representation
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Figure 2: csy for two flavors of adjoint representation fermions, with theerpolating fit, Eq. (4.2).

In both cases the interpolating fits are valid fog> 2.5. For the adjoint fermions it is difficult to
reach smallef3-values becausesy grows rapidly; and while we were able to regéh= 2.3 the
errors were too large to constrain the fit (4.2) further.
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