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1. Introduction

We have been working on the SU(3) gauge theory withNf = 2 sextet fermions for three years
now [1 – 4]. The theory’s two-loop beta function possesses a Banks–Zaks zero, but at a fairly strong
couplingg2

≃ 10. Thus it might be in the conformal window, or it might be just below and hence
a candidate for walking technicolor [5, 6].

As should be done in any systematic lattice study, I will begin by showing what we know about
the phase diagram of the lattice theory [2, 4], which is interestingly different from that of QCD.
Then I will show our results for the running coupling in the massless theory, calculated with the
Schrödinger functional method [1, 4]. What we learn from thelatter is that the coupling runs very
slowly compared to the two-loop perturbative running, which in turn is much slower than what we
are used to in QCD. Unfortunately, our extensive calculations are inconclusive when it comes to
the existence of a non-perturbative fixed point. The slow running, however, makes it easy to extract
the mass anomalous dimensionγ(g2), and we can state the fairly solid conclusion thatγ does not
exceed 0.6. This is too small for a phenomenologically viable theory of walking technicolor [7].

2. The phase diagram

We define the lattice theory with the plaquette gauge action and a Wilson–clover fermion
action. In our recent work we incorporated hypercubic smearing [8] into the fermion action, which
did not change the qualitative features of the phase diagram(but did move these features around).
I show the phase diagram in Fig. 1. The finite sizeL of our L4 lattices, besides rounding out any
phase transitions, introduces a scale that can be interpreted as a nonzero physical temperature.

We note the following features of the phase diagram:
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Figure 1: Sketches of the phase diagram of the present theory (left) and of QCD with Wilson fermions
(right) on a finite lattice. For quantitative information see [4].
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1. There is a first-order phase boundary between a strong-coupling confining phase and a weak-
coupling non-confining phase. These phases can be qualitatively distinguished by the plaque-
tte average, by the linear piece in the potential (vs. the absence thereof), and by the Polyakov
loop. All of these are discontinuous at the phase boundary, as is the measured AWI quark
massmq. The horizontal piece of the boundary moves little as the volume is changed, while
the vertical piece behaves like a finite-temperature transition, which shifts to the right with
increasingL.

2. Theκc(β ) curve, wheremq = 0, exists only in the non-confining phase where it isnot a
phase transition, since there is no pion to become massless.It intersects the phase boundary
and ends there: To the left of that intersection,mq jumps at the boundary from positive to
negative values without crossing zero. This means that there is no zero-mass pion in the
confining phase.

3. There is no critical point on the phase boundary. This situation is different from that of the
SU(2) gauge theory with adjoint fermions, where the intersection pointis a critical point [9].
It is similar to that observed in the SU(3) theory with sufficiently many flavors of fundamental
quarks [10].

The phase diagram is quite different from the well-known phase diagram of QCD with Wilson
fermions. In that theory the confining phase is bounded by a second-order transition (associated
with the Aoki phase) where the pion is massless. The finite-temperature crossover moves to the
right asL is increased, allowing a continuum limit where confinement breaks chiral symmetry
spontaneously. It is hard to see how that might happen in the present theory.

3. The discrete beta function

We have previously described [1, 11] the use of the Schrödinger functional to calculate the
running coupling on theκc curve. The discrete beta function (DBF) is defined as the shift in the
inverse coupling as the scale (i.e., the lattice size) is changed fromL to sL,

B(u,s) = g−2(sL)−u, whereu = g−2(L). (3.1)

While our earlier data were calculated with otherwise unimproved Wilson–clover fermions (“thin
links”) on small lattices, the new results shown in Fig. 2 were obtained with nHYP-smeared
fermions (“fat links”) on larger lattices. The fat-link results rule out the fixed point seen with
thin links, so that we may dismiss it as a small-lattice (and crude-action) artifact. In attempting
to extend the fat-link runs to stronger couplings, we run into the first-order phase transition shown
above, beyond which there is no massless theory. Thus we are left with the tantalizing Fig. 2, where
there is no clear fixed point. We can say unambiguously only that the coupling runs more slowly
than indicated by the two-loop DBF. This will be useful for discussing the anomalous dimension
in the next section.
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Figure 2: Discrete beta function for scale ratios= 2.

4. Anomalous dimension

An extended technicolor theory faces the challenge of suppressing flavor-changing neutral cur-
rents without suppressing quark masses as well. In walking technicolor, one envisages enhancing
the techniquark condensate from theΛTC scale to up toΛETC according to

〈

Ψ̄Ψ
〉

ETC =
〈

Ψ̄Ψ
〉

TC×exp

[

∫ ΛETC

ΛTC

dµ
µ

γ(g2(µ))

]

(4.1)

The main feature of walking is that the couplingg2 is nearly constant at an almost-fixed-point value
g2
∗

between these scales, so this formula simplifies to

〈

Ψ̄Ψ
〉

ETC≃

〈

Ψ̄Ψ
〉

TC×

(

ΛETC

ΛTC

)γ(g2
∗
)

(4.2)

Phenomenology [7] requiresγ(g2
∗
) = 1 (or veryclose to 1).

It is straightforward to calculateγ , the anomalous dimension of̄ΨΨ, in the framework of the
Schrödinger functional [12]. First, because the scalar operator is hard to calculate on the lattice,
we note that it is related by a chiral transformation to the isovector–pseudoscalar operatorPa =

Ψ̄(τa/2)γ5Ψ, which is the pion field. To calculate the anomalous dimension of the latter, we
calculate its correlation function with a Schrödinger-functional wall sourceO, propagated with
zero momentum to the temporal mid-plane of the lattice according to

〈

Pb(t) O
b(t ′ = 0)

〉
∣

∣

∣

t=L/2
= ZPZO e−mπ L/2. (4.3)
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Figure 3: Running coupling (left) and pseudoscalar renormalizationconstant (right) as functions of lattice
sizeL, for given bare couplingβ .

ZP is what we want. To eliminate the normalizationZO of the wall source, we calculate the wall-
to-wall propagator across the lattice,

〈

O
b(t = L) O

b(t ′ = 0)
〉

= Z2
O e−mπ L (4.4)

Dividing (4.3) by (4.4) givesZP(L); comparing two different lattice sizes gives the scaling relation

ZP(L)

ZP(L0)
=

(

L
L0

)

−γ
, (4.5)

whence we extractγ . In writing Eq. (4.5) we have assumed thatγ is constant between the scalesL0

andL, which is true if the coupling doesn’t run. We are supported in this assumption by the DBF
shown in Fig. 2. For any fixed bare couplingβ , we find that the running couplingg2(L) changes
by no more than 15% when varyingL = 6→ 8→ 12→ 16; see Fig. 3.

The corresponding plot ofZP shows beautiful power scaling as in Eq. (4.5). Linear fits to the
log–log plot give, for eachβ , the slopeγ ; translating fromβ to the running couplingg2 gives the
results plotted in Fig. 4. We see that the anomalous dimension follows closely the one-loop formula

γ =
6C2(R)

16π2 g2 (4.6)

out tog2
≃ 4; beyond that point it falls off the line and saturates belowγ = 0.6.

5. Conclusions

Since we can’t tell yet whether there is an infrared fixed point in this theory, let’s consider both
possibilities. Both are interesting, and each is bad news for technicolor.
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Figure 4: Anomalous dimension of̄ΨΨ, derived fromZP (red diamonds); the green squares are the results
of finite-size scaling presented in Ref. [3].

• There is NO IR fixed point: Then the phase diagram should somehow turn into QCD when
the lattice is sufficiently large. The first-order transition, where it meets theκc curve, should
slide towardsβ = ∞ asL → ∞; the discontinuity inmq (andmπ ) at the intersection should
tend towards zero at the same time so that the continuum limitpossesses a massless (or at
least a finite-mass!) pion. The theory may confine, but its coupling still runs very slowly—
maybe it walks, maybe not. The calculation ofγ is justified by this alone, and the result
γ < 0.6 is bad news for technicolor.

• There is an IR fixed point just out of reach of our calculation: Then most or all of the
κc line is in its catchment basin, and thus represents a conformal theory—unparticles, not
technicolor. The first-order transition will be stuck near where we found it, since it can’t
penetrate into a conformal phase. Maybe a slightly different lattice action will make the
fixed point accessible; maybe it’s just a question of statistics. Finally, presumablyγ ≃ 0.6 at
the fixed point. This may mean that the theory is deep inside the conformal window, since,
according to a number of models [13, 14],γ = 1 at the bottom of the conformal window. It
would be very interesting then to study the theory on the strong-coupling side of the fixed
point [15], where there may or may not be found a UV-attractive fixed point, which is a
critical point in the usual usage.

For studies of this theory formulated with staggered fermions, see [16, 17].
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