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1. Introduction

The low-lying spectrum of the Dirac operator is a fascingtsubject, which also contains
important physics. Recently, three of the present authmesgmted an analysis of the quenched
spectrum of the Wilson Dirac operatBxy [1]. Focus was on the low-lying real modesjf, and
the Hermitian counterpaBs = y5(Dw +m). Effects of the lattice spacirgwere taken into account
to leading order. A chiral Random Matrix Theory that encdai®s these leading order terms was
then established. As the sikeof the random matrices goes to infinity, a scaling regimeashed
where this chiral Random Matrix Theory coincides with whaembtains from the Wilson chiral
Lagrangian to leading order im This extends in a precise manner the universal Random Matri
Theory results of continuum fermions [2, 3] to Wilson ferm$oin the microscopic scaling regime.
In particular, the appropriate definition of aaregime [4] for the low-lying eigenvalues of the
Wilson Dirac operator is identified [1]. The correspondingestrum away from the microscopic
limit was first analyzed at the mean field level by Sharpe in[f&f The Letter [1] was very much
motivated by that work and a wish to understand in detail ar@haanalytical level some of the
results of the lattice simulations in ref. [6].

Here we report on a study of the effect of dynamical quarkshesé results. Because the case
of two light flavors is significantly more difficult in terms @omputational complexity, we take
here the first step of unquenching by considetifig= 1. This case is of interest in its own right
because there are no Goldstone bosons and hence no chiranb&m at our disposal. Never-
theless, effective field theory can be used to describe ireeige way the leading-order effects of
Wilson terms in lattice gauge theory also in this case. Byamting onto sectors of a fixed num-
berv of real modes (counted with the sign of their chiralitiess below), we can also establish a
chiral Random Matrix Theory with exactly the same propsraes the effective field theory in the
scaling limit. As for continuum fermions, the effective figheory in each fixed sector looks just
like the leading term in ag-regime counting of a chiral Lagrangian. Yet there are nodStine
bosons and hence no way to systematically introduce a &digftd space-time dependent chiral
Lagrangian which could incorporate sub-leading effectaroéssociated-expansion.

2. The effective field theory

Chiral symmetry for QCD with just one flavor is broken exgligidue to theU (1) anomaly,
and there are no Goldstone bosons. As a consequence, we laavedhe toolbox of chiral Pertur-
bation Theory available. Leutwyler and Smilga [4] facedraikir situation when dealing with the
spectrum of the continuum Dirac operator, and we will hetfothe same line of reasoning. In
the continuum, the leading effect of a quark mamss proportional to the four-volum¥. Because
the logarithmic derivative yields the chiral condensaié follows that the partition function must
readZ ~ exgmV]. This term corresponds tay in the QCD Lagrangian. For Wilson fermions,
the Symanzik effective action has additional operator®((/()°. Such terms give an additional
contribution to the free energy of ordaf so that now

Z = exp[mzV — 2WgVa?] (2.1)

whereWs is a so far unknown constant. We have chosen the parameinzad that this constant
is naturally positive (the factor of 2 is for later converge As argued in ref. [1] a positive sign
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of Ws is follows from from the Hermiticity properties ddy. We define the appropriateregime
here by requiring that

m=mV and & = a®WV

remain fixed a8/ — . This is the regime where there is competition betweeanda? effects
and one can imagine that a phase transition may occur. This twt to be a transition to the
Aoki phase [7] (see also [8]). Other countings can also baidened [9], but they are not of direct
interest to us here.

In the continuum, a chiral rotation shifts the vacuum anglé — 6 + a. Noting that the
a’-term in the effective action comes from operataté/y)?, we define

Z(6) = exp[mcog0)zV — 2WgVa®cog26)] (2.2)
and its Fourier components read:
Tde ivo 2
Z, = / ﬁe' exp[mcog8)3V — 2WgVa“ cog26)] (2.3
—TT

Inverting this, we recover the original partition functias a sum over eadh, after settingd = O:

2(6=0) = i Z,. (2.4)

V=—00

Let us now look at eacH, separately. Interestingly,
1
Z, = / du detU)"exp SMEVTI{U +U ) —Weva?Tru?+U 7. (2.5)
u(1)

This looks exactly like the zero-momentum piece of the legderms of aJ (1) chiral Lagrangian
for Wilson fermions [10]. However, there are no Goldstonsdits, and the) (1) 'degree of free-
dom’ results from the angular integration variable of theifer transform.

For generaN; there would also be double-trace terms ljfe[U 4+-U ~1])2 and(Tr[U —U 1)),
butin thisU (1) case such terms just change the normalizatiohgadfter use of elementary trigono-
metric identities.

3. Low-lying modes of the Wilson Dirac Operator

To get spectral information for the Wilson Dirac operator mezd either

* Pairs of extra species with opposite statistics (the giadethod [12]) or

* Replicas [11, 2].
Here we use the graded method. We thus add a bosonic quark emrdeaponding additional
fermionic quark, both with appropriate sources. When tlseggces are set equal to each other, the
two additional determinants exactly cancel each otherhiglimit, the partition function of this
graded theory therefore equals the partition function of3Q&th the original one flavor.

The graded method can be used in the effective field theoryedls Wdditional Grassmann
integrations truncate and trivially converge, but care nhgstaken to ensure convergence of the
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bosonic integrations. This problem has been solved in the contexbofinuum fermions in ref.
[12]. The graded partition function is

~ oA 1 21—t -1 i d P 1\ A2 2.1)-2
Zzu(//l’ff):/g(u) dU SdetU )V g 3ST-#1U-U 1) +ESTIZU+U ) +&8STrU+U ) (3.1)

The source terms are

m; 0 0 200
=] 0mMO =1012z0
0 onY 007

and whenm'= Y andZ= 7 a little miracle occurs: the graded partition function bees equal
to the original partition function oN; = 1. This follows from general principles, but it arises in a
highly non-trivial manner from the actual integrations qf €3.1). An explicit parametrization of
the graded matrixJ has been provided in ref. [12]:

gitilicogB) i€ 19sin(8) 0 0 0
U= | ie"""?sin(@) €UcogB) 0 |exp| 0 0 a
0 0 e BLB2 O

wheref,t,u € [—m, 1] and@ € [0, 1. The bosonic degree of freedais integrated over the real
line, and thea’s andB’s are Grassmann variables.

A careful reader will have noticed the unusual form of (3.Before extending the theory to
the graded case, a rotatibh— iU has been performed. In the origina(1)-integral this simply
shifts the angular variable by/2, while still integrating it over the full circle. Doing sha@ rotation
prior to extending the action to the graded case correspmralparticular path of integration for the
bosonic variables. It is the integration path used in eq. (3.1) which corresisai® a non-Hermitian
(but y5-Hermitian) Wilson Dirac operatddy.

The integrals in eq. (3.1) are tedious but doable. We havieimeed the Grassmann integra-
tions and one of the angular integrations explicitly. Thguténg expressions will be published
elsewhere. Here we choose to present our results in a gedphanner.

While the Wilson Dirac Operator is not Hermitian, it is impemt that it nevertheless retains
ys-Hermiticity: D\‘;\, = wDw). Indeed, it is this property that ensures Hermiticity[®f. The
spectrum ofDy thus lies in the complex plane, each non-real eigenvaluegbeiatched by its
complex conjugate partner. To compute the spectrum of thre-bhermitian) Wilson Dirac operator
by analytical means is slightly cumbersome because oflttasvever,Dyy also has a certain number
of eigenvalues sitting on the real line. The distributiorttaf chiralities of the corresponding states
over the Dirac spectrum is much easier to compute. To thislehds define a resolvent (and put
2=72=0)

V(M) = Alimm%]lnzgl(mf,m,ﬁf). (3.2)
The discontinuity across the real line gives us the distidiouof the chiralities over the Dirac
spectrum

A A ~

Q)= 5 80— %0x = Smiz(i, 0 (33
k7Zke%
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Figure 1: The density of chiralities of the Wilson Dirac operator.

with the chirality xx = sign((k|ys|K)).
The integral over this distribution is normalizeduo

[ ateyd) = v. (3.4)

The indexv counts chiralities of the real modesB{y in Z,: v = 3, Xxn wheren runs over all real
modes. In the limit of smalh the probability of finding configurations with real modestthave
chiralities of different signs vanishes. In that limiis simply the number of real modes. The non-
positivity of the density of real modes is unrelated to tlisshange of sign occurs ét: M. Only
whennis on the order of or less tharm8does this have significance in the density since otherwise
the density is very small anyway. We show an example of theiloligsion of the chiralities over the
real modes in fig. 1.

We now wish to compute the spectrum of the Hermitian WilsoraDoperatoDs = y5(Dw +
m). To that end, introduce the new resolvent

N>
N
>

) o 1
GY(zm) = Ile %Inzgu(m,m,m,o,z,z’) = <Tr<D5+2>> (3.5)

and take the discontinuity across the real line. This givetha spectral density &is:
Vo 1 Vig &
PYR) = ~Im[GY (R )] (3.6)

Let us first consider the spectrum corresponding/te: 0. In fig. 2 we show the density
for fixed h = 5 and various values af?” Whend'is small, a gap clearly opens up aroustah,
as it should. The spectrum &fs then approaches the standard spectrum of the continuung Dira
operator with one massive fermion [13], up to a trivial chargf variables. In contrast to the
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Figure 2: Spectral density of the Hermitian Wilson Dirac operator¥oe 0. (Dashed linedl; =0.)

guenched spectrum, the microscopic spectrumpin this N; = 1 theory always has a zero at the
origin. This is clearly visible in fig. 2.

There are other differences with the quenched spectrumaudecof the real modes, the spec-
trum of Ds can change sign in the; = 1 theory. A negative density simply corrersponds to a
theory with a sign problem: the Boltzmann weight in the patiegral is not positive definite. The
existence of a negative density is thus a potential problEmmdmerical simulations. Fortunately
the sign problem in this theory is mild: it is only signifactthe smallm limit, and it can be post-
poned by going to smaller lattice spacingsWe illustrate this phenomenon in fig. 3, where we
consider a case with = 1. The analytical understanding we can provide here shaoziiebhiable
for numerical simulations.

4. Conclusions

We have presented an explicit computation of the microscejgienvalue distributions of the
Wilson Dirac operator, the real modes of this operator, aiectigenvalues of the Hermitian Wilson
Dirac operator. We have focused on effects that most clelislynguish a theory with dynamical
quarks from the quenched counterpart [1]. A sum over thexindean be done straightforwardly.
This will be presented elsewhere.
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Figure 3: Same as fig.2, but now for= 1. The spectral density is no longer positive.
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